Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Xenopus oocytes can secrete bacterial β-lactamase

Abstract

Most secretory proteins are synthesized as precursor polypeptides carrying N-terminal, Hydrophobie sequences which, by means of a signal recognition particle (SRP)1,3, trigger the membrane transfer of the polypeptide and are subsequently cleaved off. The signal sequences appear to be interchangeable between prokaryotes and eukaryotes4,5. In bacteria, secretion only involves the crossing of a membrane6, whereas in eukaryotes the secretory process can be separated into two distinct phases: translocation across the membrane of the rough endoplasmic retieulum and subsequent intraluminal transport by processes involving vesicle budding and fusion7. Since secretory proteins must be distinguished from other soluble proteins destined for various sites in the reticular system, it is conceivable that eukaryotic secretory proteins possess additional markers distinct from the signal peptide to guide the polypeptide after its transfer through the membrane. Proteins are secreted at different rates from a eukaryotic cell8,34, suggesting a role in intracellular transport for receptors with differing affinities for some topogenic features in secretory proteins. We have tested this possibility by introducing into the lumen of eukaryotic rough endoplasmic reticulum a prokaryotic protein which, by virtue of its origin, had not been adapted to the eukaryotic secretory pathway. We reasoned that secretion of the bacterial protein would indicate that after membrane transfer no topogenic signal(s) and corresponding recognition system(s) are required. We report here that this is indeed the case.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walter, P. & Blobel, G. J. Cell Biol. 91, 557–561 (1981).

    Article  CAS  Google Scholar 

  2. Walter, P. & Blobel, G. Nature 299, 691–698 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 852–862 (1975).

    Article  CAS  Google Scholar 

  4. Talmadge, K., Stahl, S. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 3369–3373 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Müller, M., Ibrahimi, I., Chang, C. N., Walter, P. & Blobel, G. J. biol. Chem. 257, 11860–11863 (1982).

    PubMed  Google Scholar 

  6. Michaelis, S. & Beckwith, J. A. Rev. Microbiol. 36, 435–465 (1982).

    Article  CAS  Google Scholar 

  7. Palade, G. Science 189, 347–358 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Strous, G. J. A. M. & Lodish, H. F. Cell 22, 709–717 (1980).

    Article  CAS  Google Scholar 

  9. Lane, C. D. Cell 24, 281–282 (1981).

    Article  CAS  Google Scholar 

  10. Huth, A., Rapoport, T. A. & Kääriäinen, L. EMBO J. 3, 767–771 (1984).

    Article  CAS  Google Scholar 

  11. Barnard, E. A., Miledi, R. & Sumikawa, K. Proc. R. Soc. B215, 241–246 (1982).

    ADS  CAS  Google Scholar 

  12. Roberts, B. E. et al. Proc. natn. Acad. Sci. U.S.A. 72, 1922–1926 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Contreras, R., Cheroutre, H. & Fiers, W. Nucleic Acids Res. 10, 6353–6362 (1982).

    Article  CAS  Google Scholar 

  14. Furuichi, Y., La Fiandra, A. & Shatkin, A. J. Nature 266, 235–239 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Paterson, B. M. & Rosenberg, M. Nature 279, 692–696 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Walter, P. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 7112–7116 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Roggenkamp, R., Kustermann-Kunn, B. & Hollenberg, C. P. Proc. natn. Acad. Sci. U.S.A. 78, 4466–4470 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Lockard, R. E. & Lane, C. D. Nucleic Acids Res. 5, 3237–3247 (1978).

    Article  CAS  Google Scholar 

  19. Sykes, R. B. & Matthew, M. in Beta-Lactamases (eds Hamilton-Miller, J. M. T. & Smith, J. T.) 17–49 (Academic, New York, 1979).

    Google Scholar 

  20. Eppig, J. J. Jr & Dumont, J. N. Devl Biol. 28, 531–536 (1972).

    Article  CAS  Google Scholar 

  21. Rapoport, T. A. Eur. J. Biochem. 115, 665–669 (1980).

    Article  Google Scholar 

  22. Colman, A. & Morser, J. Cell 17, 517–526 (1979).

    Article  CAS  Google Scholar 

  23. Hasilik, A. Trends biochem. Sci. 5, 237–240 (1980).

    Article  CAS  Google Scholar 

  24. Lane, C. D., Champion, J., Haiml, L. & Kreil, G. Eur. J. Biochem. 113, 273–281 (1981).

    Article  CAS  Google Scholar 

  25. Hurkman, W. J., Smith, L. D., Richter, J. & Larkins, B. A. J. Cell Biol. 89, 292–299 (1981).

    Article  CAS  Google Scholar 

  26. Walter, P., Ibrahimi, I. & Blobel, G. J. Cell Biol. 91, 545–550 (1981).

    Article  CAS  Google Scholar 

  27. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  Google Scholar 

  28. Scheele, G. A. & Blackburn, P. Proc. natn. Acad. Sci. U.S.A. 76, 4898–4902 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  30. Gurdon, J. J. Embryol. exp. Morph. 20, 401–414 (1968).

    CAS  Google Scholar 

  31. Soreq, H. & Miskin, R. FEBS Lett. 128, 305–310 (1981).

    Article  CAS  Google Scholar 

  32. Laemmli, U. K. Nature 277, 680–685 (1970).

    Article  ADS  Google Scholar 

  33. Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  Google Scholar 

  34. Lodish, H. F., Kong, N., Snider, M. & Strous, G. J. A. M. Nature 304, 80–83 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedmann, M., Huth, A. & Rapoport, T. Xenopus oocytes can secrete bacterial β-lactamase. Nature 309, 637–639 (1984). https://doi.org/10.1038/309637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309637a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing