Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells

Abstract

Mammalian cells selected for resistance to certain cytotoxic drugs frequently develop cross-resistance to a broad spectrum of other drugs unrelated in structure to the original selective agent1,2. This phenomenon constitutes a major problem in cancer chemotherapy. Multi-drug resistance arises from decreased intracellular drug accumulation1–4, apparently due to an alteration of the plasma membrane2,5–7. The observation of double minute chromosomes or homogeneously staining regions in some of the multi-drug-resistant cell lines8–12 suggests that gene amplification underlies this phenomenon. We have used the technique of DNA renaturation in agarose gels13 to detect, compare and clone amplified DNA sequences in Adriamycin- and colchicine-resistant sublines of Chinese hamster cells3,12. We show that both Adriamycin- and colchicine-resistant cells contain amplified DNA fragments, some of which are amplified in both of these independently derived cell lines. Furthermore, loss of the multi-drug resistance phenotype on growth in the absence of drugs correlates with the loss of amplified DNA. These results strongly suggest that the DNA sequences which are amplified in common in multi-drug-resistant cell lines include the gene(s) responsible for a common mechanism of multi-drug resistance in these cells. We have cloned one of the commonly amplified DNA fragments and show that the degree of amplification of this fragment in the cells correlates with the degree of their drug resistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Biedler, J. L., Chang, T., Meyers, M. B., Peterson, R. H. F. & Spengler, B. A. Cancer Treat. Rep. 67, 859–868 (1983).

    CAS  PubMed  Google Scholar 

  2. 2

    Ling, V., Kartner, N., Sudo, T., Siminovitch, L. & Riordan, J. R. Cancer Treat. Rep. 67, 869–874 (1983).

    CAS  PubMed  Google Scholar 

  3. 3

    Ling, V. & Thompson, L. H. J. cell. Physiol. 83, 103–116 (1974).

    CAS  Article  Google Scholar 

  4. 4

    Inaba, M., Kobayashi, H., Sakurai, Y. & Johnson, R. K. Cancer Res. 39, 2200–2203 (1979).

    CAS  PubMed  Google Scholar 

  5. 5

    Kessel, D. & Bosmann, H. B. Cancer Res. 30, 2695–2701 (1970).

    CAS  PubMed  Google Scholar 

  6. 6

    Beck, W. T., Muellen, T. J. & Tanzer, L. R. Cancer Res. 39, 2070–2076 (1979).

    CAS  PubMed  Google Scholar 

  7. 7

    Ramu, A., Shan, T. & Glaubiger, D. Cancer Treat. Rep. 67, 895–899 (1983).

    CAS  PubMed  Google Scholar 

  8. 8

    Baskin, F., Rosenberg, R. N. & Dev, V. Proc. natn. Acad. Sci. U.S.A. 78, 3654–3658 (1981).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kopnin, B. P. Cytogenet. Cell Genet. 30, 11–14 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Kuo, T., Pathak, S., Ramagli, L., Rodriguez, L. & Hsu, T. C. in Gene Amplification (ed. Schimke, R. T.) 53–57 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  11. 11

    Grund, S. H., Patil, S. R., Shah, H. O., Pauw, P. G. & Stadler, J. K. Molec. cell. Biol. 3, 1634–1647 (1983).

    CAS  Article  Google Scholar 

  12. 12

    Howell, N., Belli, T. A., Zaczkiewics, L. T. & Belli, J. A. Cancer Res. (in the press).

  13. 13

    Roninson, I. B. Nucleic Acids Res. 11, 5413–5431 (1983).

    CAS  Article  Google Scholar 

  14. 14

    Tyler-Smith, C. & Bostock, C. J. J. molec. Biol. 153, 203–218 (1981).

    CAS  Article  Google Scholar 

  15. 15

    Heintz, N. H. & Hamlin, J. L. Proc. natn. Acad. Sci. U.S.A. 79, 4083–4087 (1982).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Dagert, M. & Ehrlich, S. D. Gene 6, 23–28 (1979).

    CAS  Article  Google Scholar 

  17. 17

    Birnboim, H. C. & Doly, J. Nucleic Acids Res. 7, 1513–1520 (1979).

    CAS  Article  Google Scholar 

  18. 18

    Southern, E. J. molec. Biol. 98, 503–517 (1975).

    CAS  Article  Google Scholar 

  19. 19

    Brown, P. C., Tlsty, T. D. & Schimke, R. T. Molec. cell. Biol. 3, 1097–1107 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Schimke, R. T. (ed.) Gene Amplification (Cold Spring Harbor Laboratory, New York, 1982).

  21. 21

    Stark, G. R. A. Rev. Biochem. (in the press).

  22. 22

    Riordan, J. R. & Ling, V. J. biol. Chem. 254, 12701–12705 (1979).

    CAS  PubMed  Google Scholar 

  23. 23

    Belli, J. A. Front. Radiat. Ther. Oncol. 13, 9–20 (1979).

    CAS  Article  Google Scholar 

  24. 24

    Blin, N. & Stafford, D. W. Nucleic Acids Res. 3, 2303–2309 (1976).

    CAS  Article  Google Scholar 

  25. 25

    Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    CAS  Article  Google Scholar 

  26. 26

    Kartner, N., Riordan, J. R. & Ling, V. Science 221, 1285–1288 (1983).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Debenham, P. G., Kertner, N., Siminovitch, L., Riordan, J. R. & Ling, V. Molec. cell. Biol. 2, 881–889 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roninson, I., Abelson, H., Housman, D. et al. Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells. Nature 309, 626–628 (1984). https://doi.org/10.1038/309626a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.