Nets with channels of unlimited diameter

Abstract

Three-dimensional nets and polyhedra1,2 present an unlimited mathematical challenge, and systematic enumeration of the infinite series of four-connected nets is just developing3–10 using selected algorithms. Several framework structures were solved and classified by invention of new nets (see refs 11–13). The four-connected nets of low density are of practical interest because their nodes may correspond with the tetrahedrally-coordinated atoms of aluminosilicate zeolites14, some silica polymorphs15, aluminophosphates16,17 and other molecular sieves. The nets can be classified by circuit symbols1–7 and coordination sequences18,19. Each oxygen atom of a zeolite and other tetrahedral frameworks lies near the midpoint of a branch connecting two tetrahedral nodes, and the empty volume between the close-packed oxygen atoms is important for molecular sorption. The largest ring in a natural zeolite or synthetic molecular sieve involves 12 tetrahedra11,14, but larger rings and sphere packings of lower density are known12,20–24. We report here two new infinite series of four-connected three-dimensional nets which contain channels of unlimited diameter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Wells, A. F. Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977).

  2. 2

    Wells, A. F. Further Studies of Three-Dimensional Nets (American Crystallographic Association Monogr. No. 8, Polycrystal Book Service, Pittsburgh, 1979).

  3. 3

    Smith, J. V. Am. Miner. 62, 703–709 (1977).

  4. 4

    Smith, J. V. Am. Miner. 63, 960–969 (1978).

  5. 5

    Smith, J. V. Am. Miner. 64, 551–562 (1979).

  6. 6

    Smith, J. V. & Bennett, J. M. Am. Miner. 66, 777–788 (1981).

  7. 7

    Smith, J. V. Z. Kristallogr. 65, 191–198 (1983).

  8. 8

    Smith, J. V. & Bennett, J. M. Am. Miner. 69, 104–111 (1984).

  9. 9

    Alberti, A. Am. Miner. 64, 1188–1198 (1979).

  10. 10

    Sato, M. Acta crystallogr. A35, 547–553 (1979).

  11. 11

    Dent, L. S. & Smith, J. V. Nature 181, 1794–1796 (1958).

  12. 12

    Barrer, R. M. & Villiger, H. Z. Kristallogr. 128, 352–370 (1963).

  13. 13

    Merlino, S. R. Soc. miner. petrol. ital. 31, 513–540 (1975).

  14. 14

    Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types (Juris, Zurich, 1978).

  15. 15

    Flanigen, E. M. et al. Nature 271, 512–516 (1978).

  16. 16

    Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. M. J. Am. chem. Soc. 104, 1146–1147 (1982).

  17. 17

    Bennett, J. M., Cohen, J. P., Flanigen, E. M., Pluth, J. J. & Smith, J. V. Am. chem. Soc. Symp. Ser. 218, 79–106 (1983).

  18. 18

    Brunner, G. O. Z. Kristallogr. 156, 295–303 (1981).

  19. 19

    Meier, W. M. & Moeck, H. J. J. Solid St. Chem. 27, 349–355 (1979).

  20. 20

    Heesch, F. & Laves, F. Z. Kristallogr. 85, 443–453 (1933).

  21. 21

    Melmore, S. Nature 149, 412 (1942).

  22. 22

    Melmore, S. Nature 149, 669 (1942).

  23. 23

    Fischer, W. Z. Kristallogr. 143, 140–155 (1976).

  24. 24

    Brunner, G. O. J. Solid St. Chem. 29, 41–45 (1979).

  25. 25

    Gramlich-Meier, R. & Meier, W. M. J. Solid St. Chem. 44, 41–49 (1982).

  26. 26

    Flanigen, E. M. Adv. Chem. Ser. No. 121, 119–139 (1973).

  27. 27

    Price, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. J. Am. chem. Soc. 104, 4971–4977 (1982).

  28. 28

    Evans, H. T. Jr in Perspectives in Structural Chemistry Vol. 4 (eds Dunitz, J. D. & Ibers, J.) 1–59 (Wiley, New York, 1971).

  29. 29

    Moore, P. B. & Shen, J. Nature 306, 356–358 (1983).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, J., Dytrych, W. Nets with channels of unlimited diameter. Nature 309, 607–608 (1984). https://doi.org/10.1038/309607a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.