Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observational lower mass limit for black hole formation derived from massive X-ray binaries

Abstract

The high radial velocity amplitude (235 km s−1) and 1.70-day orbital period of the B3V optical counterpart of the X-ray source LMC X-3 set a lower limit of 6–10 M for the mass of the X-ray source, strongly suggesting that it is a black hole1,2. An observational upper limit to the mass of this compact star can be derived which, in combination with considerations about the evolutionary history of the system, allows us to derive an upper limit to the (zero age) mass of the progenitor of the compact star in this system: 80±10 M. From the orbital parameters of pulsating massive X-ray binaries we find that stars with masses up to 40 (±5) M (and, if supernova (SN) mass ejection is symmetric, up to 60 (±7) M) terminate life as neutron stars. Thus, if LMC X-3 is a black hole, the lower mass limit for terminating life as a black hole is in the range between 40 (60 M) and 80 M. Together with the initial mass function of massive stars this yields a black hole formation rate in the galaxy about two orders of magnitude smaller than the neutron-star formation rate. The direct progenitors of the black holes (just before the supernova) were massive Wolf–Rayet (WR) stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cowley, A. P., Crampton, D., Hutchings, J. B., Remillard, R. & Penfold, J. E. Astrophys. J. 272, 118–122 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Paczynski, B. Astrophys. J. Lett. 273, L81–L84 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Van der Klis, M., Tjemkes, S. & Van Paradijs, J. Astr. Astrophys. 126, 265–268 (1983).

    ADS  CAS  Google Scholar 

  4. Flannery, B. P. & Van den Heuvel, E. P. J. Astr. Astrophys. 39, 61–67 (1975).

    ADS  Google Scholar 

  5. Fryxell, B. A. & Arnett, W. D. Astrophys. J. 243, 994–1002 (1981).

    Article  ADS  Google Scholar 

  6. Fryxell, B. A. Astrophys. J. 234, 641–652 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Savonije, G. J. & Papaloizou, J. Mon. Not. R.astr. Soc. 203, 581–593 (1983).

    Article  ADS  Google Scholar 

  8. Eggleton, P. P. Astrophys. J. 268, 368–369 (1983).

    Article  ADS  Google Scholar 

  9. Blaauw, A. Bull. astr. Inst. Netherlands 15, 265–290 (1961).

    ADS  Google Scholar 

  10. Van der Linden, Th. J. Astr. Astrophys. (in the press).

  11. Paczynski, B. in Structure and Evolution of Close Binary Stars (eds Eggleton, P. et al.) 75–80 (Reidel, Dordrecht, 1976).

    Book  Google Scholar 

  12. Van den Heuvel, E. P. J. Fundamental Problems in the Theory of Stellar Evolution, IAU Symp. No. 93, 155–176 (1981).

    Book  Google Scholar 

  13. Meyer, F. & Meyer-Hofmeister, E. Astr. Astrophys. 78, 167–176 (1979).

    ADS  Google Scholar 

  14. Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Astrophys. J. 222, 269–280 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Conti, P. S. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds de Loore, C. W. H. & Willis, A. J.) 3–22 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  16. Willis, A. J. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds De Loore, C. W. H. & Willis, A. J.) 87–104 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  17. Barlow, M. J. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds de Loore, C. W. H. & Willis, A. J.) 149–172 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  18. Abbott, D. C. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds de Loore, C. W. H. & Willis, A. J.) 185–196 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  19. Chiosi, C. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds De Loore, C. W. H. & Willis, A. J.) 323–341 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  20. Maeder, A. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds De Loore, C. W. H. & Willis, A. J.) 371–375 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  21. Arnett, W. D. in Physics and Astrophysics of Neutron Stars and Black Holes (eds Giacconi R., Ruffini, R.) 356–436 (North-Holland, Amsterdam, 1978).

    Google Scholar 

  22. Chiosi, C., Nasi, E. & Sreenivasan, S. R. Astr. Astrophys. 63, 103–124 (1978).

    ADS  CAS  Google Scholar 

  23. Lamers, H. J. Astrophys. J. 245, 593–608 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Van Beveren, D. thesis, Free Univ. of Brussels (1980).

  25. De Loore, C. in Wolf-Rayet Stars: Observations, Physics, Evolution (eds de Loore, C. & Willis, A. J.) 343–358 (Reidel, Dordrecht, 1982).

    Google Scholar 

  26. Maeder, A. Astr. Astrophys. 99, 97–107 (1981).

    ADS  CAS  Google Scholar 

  27. Watson, M. G., Warwick, R. S. & Corbet, R. H. D. Mon. Not. R. astr. Soc. 199, 915–924 (1982).

    Article  ADS  Google Scholar 

  28. Warwick, R. S., Watson, M. G. & Sims, M. R. Space Sci. Rev. 30, 461–466 (1981).

    Article  ADS  Google Scholar 

  29. Rappaport, S. A. & Joss, P. C. in Accretion-Driven Stellar X-ray Sources (eds Lewin, W. H. G. & van den Heuvel, E. P. J.) 1–39 (Cambridge University Press, 1983).

    Google Scholar 

  30. Kelley, R., Rappaport, S. & Petre, R. Astrophys. J. 238, 699–709 (1980).

    Article  ADS  Google Scholar 

  31. Abbot, D. C. Astrophys. J. 263, 723–735 (1982).

    Article  ADS  Google Scholar 

  32. De Greve, J. P. thesis, Free Univ., Brussels (1976).

  33. Van den Heuvel, E. P. J. in Accretion-Driven Stellar X-ray Sources (eds Lewin, W. H. G. & van den Heuvel, E. P. J.) 303–341 (Cambridge University Press, 1983).

    Google Scholar 

  34. Garmany, C. D., Conti, P. S. & Chiosi, C. Astrophys. J. 263, 777–790 (1982).

    Article  ADS  CAS  Google Scholar 

  35. Tammann, G. A. Ann. N.Y. Acad. Sci. 302, 61–80 (1977).

    Article  ADS  Google Scholar 

  36. Manchester, R. N. & Taylor, J. H. in Pulsars (Freeman, San Francisco, 1977).

    Google Scholar 

  37. Van den Heuvel, E. P. J. Vistas Astr. 25, 95–108 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Heuvel, E., Habets, G. Observational lower mass limit for black hole formation derived from massive X-ray binaries. Nature 309, 598–600 (1984). https://doi.org/10.1038/309598a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309598a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing