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Fourier's law obeyed official 
Analysis of a mechanical model characterized by deterministic randomness (chaos) allows 
verification of elementary principles of heat conduction. But it may have other value. 

THOSE who hold that the reductionist pro
gramme is a mistaken attempt to account 
for all phenomena in terms of elementary 
processes usually look for evidence to sup
port their case in the behaviour of living 
things. They may be well advised, it seems, 
to pay closer attention to a long-familiar 
part of classical physics and in particular to 
the theory of heat conduction. 

The problem, as a little reflection will 
show, is that there is still no unambiguously 
unobjectionable way of calculating from 
the Jaws of dynamics as applied to atoms 
and molecules the most elementary princ
iple underlying the phenomenon of heat 
conduction - the notion that the rate of 
heat conduction between two parallel plane 
surfaces in some medium is proportional to 
the temperature difference between them, 
widely known as Fourier's Jaw. From this 
simple statement follow the differential 
equations which specify the time
dependent variation of temperature or of 
heat flux in conducting objects of all kinds. 
Calculations based on Fourier's Jaw have 
naturally been widely used in tasks as dif
ferent as the inference of temperature 
distribution within the Earth and the 
design of industrial heat exchangers. So in 
what sense can Fourier's Jaw be less than 
well grounded in physical principles? 

The familiarity of Fourier's Jaw no 
doubt blinds us to its non-trivial character. 
It is not, however, difficult to construct 
other plausible phenomenological schemes 
to describe the rate of heat conduction 
through material objects. The most ob
vious modification is that suggested by the 
process of radiative heat transfer: each ele
ment in a body at a temperature different 
from absolute zero might give rise to an 
isotropic heat flux which is simply a func
tion of the temperature of the element. For 
small temperature differences, Fourier's 
law would be approximately true, and 
while the rate of heat conduction through a 
fluid from some solid object would 
awkwardly be a function of the 
temperature of that object, it might in 
practice be hard to distinguish such a varia
tion of conduction away from a source of 
heat from the variation with temperature 
of the heat conductivity of media of all 
kinds. 

But surely, even schoolboys will ask, has 
not this issue long since been dealt with? 
Heat conduction through gases is familiar
ly dealt with by kinetic theory, with results 
entirely in accordance with Fourier's Jaw. 
For more general fluids, it may be 

necessary to take account of more com
plicated treatments of transport in kinetic 
systems along the lines originally proposed 
by Enskogg, but the objectives are the same 
- to calculate the rate of transport of 
kinetic energy from the distribution of the 
momenta of particles and the chance of 
collisions between them. In metals, on the 
other hand, it is more prudent to start from 
the likely excitation of conduction elec
trons into states of higher energy, and to 
allow for the interruption of free electronic 
motion in such a state by the vibration of 
the underlying lattice. Although most of 
this is intricate, in principle it is straight
forward. So why should Peierls (in 1961) 
have written that the derivation of 
Fourier's Jaw from elementary dynamics is 
"one of the outstanding unsolved prob
lems of modern physics"? 

Peierls' remark derives from his own 
work in the 1950s on the interaction be
tween lattice electrons and the spacings of 
the underlying lattice. That the interaction 
may sometimes mean that a regular lattice 
breaks up into consecutive insulating 
patches or, alternatively, will permit the ef
ficient transport of electrons in the forms 
of "solitons" is now part of the familiar 
understanding of conduction in solids, 
superconductivity in particular. The defi
ciencies of the theoretical foundation of 
Fourier's law consist, from this point of 
view, in the way in which all attempts to 
calculate heat transport (and other trans
port processes) from first principles rely, at 
some level, on an averaging process. 

This is the starting point for a calculation 
published by Joseph Ford and Franco 
Vivaldia (Georgia Institute of 
Technology), Giulio Casati (Milan) and 
William M. Visscher (Los Alamos) at the 
end of last month (Phys.Rev.Lett. 52, 
1861; 1984). Theirfirst task is the choice of 
a deterministically random (or chaotic) 
mechanical system with which to model a 
solid heat conductor. Such a system must 
be simple enough to be calculable, at least 
numerically, yet free from exceptional 
modes of behaviour that might vitiate the 
modelling of thermal conductivity and yet 
sufficiently complicated to be vaguely 
reminiscent of the real world. With 
fashionable but needless whimsy, the 
authors settle for what they call a "ding-a
ling'' system - a one-dimensional array of 
hard spheres similarly anchored by sym
metrical restoring forces to fixed lattice 
points with equal freely moving spheres 
sandwiched between them. At the end of 

the array are two thermal reservoirs, which 
communicate with the conducting array by 
means of similar freely moving spheres, 
which if accepted into the reservoir are 
promptly returned with a velocity specified 
by the velocity-distribution appropriate to 
the corresponding temperature. 

The model works straightforwardly. The 
stiffness of the lattice-bound particles has 
to be great enough for chaotic motion to 
supervene. What happens is that the 
oscillating spheres act as relatively 
unresponsive transducers for energy car
ried by the intermediate freely moving 
spheres. The rate of energy transport can 
be estimated from the rate at which energy 
emerges from the high temperatpre end of 
the system, or from the equal rate at which 
it arrives at the other. The numerical 
calculations have been carried through ful
ly only with very short linear chains, with 
two and four anchored spheres respective
ly. The result, cheerfully, is a constant 
coefficient of thermal conductivity (within 
ten per cent or so). The argument has, 
however, been made more plausible by 
means of a calculation of next-nearest 
neighbour correlations (between 
neighbouring anchored spheres) for a more 
general system, from which again a con
stant thermal conductivity is derived. 

So far, then, so good. Here is a simple 
dynamical system with many of the 
recognizable characteristics of a heat
conducting solid which does indeed 
transduce energy in accordance with 
Fourier's law. Many people will no doubt 
now be tempted to embark on generaliza
tions of this simple model. Two dimen
sions? Even three dimensions? Excessive 
zeal of that kind would be misplaced. What 
Casati et at. have done is to demonstrate 
that a dynamical system does indeed 
behave. as would be expected under the in
fluence of a random input of impulse. In 
passing, they have also been able to show 
that in strictly mechanical systems such as 
these, the exceptional dynamical solutions, 
the putative solitons, are no great encum
brance if the vibrational frequency of the 
anchored spheres is sufficiently great. The 
other side of this coin is that such models 
might indeed be used fQr studying energy 
transport in, say, superconducting 
materials. Whether reductionists should be 
alarmed by all this is quite a different mat
ter, although some of them may be dis
mayed that this may be that hitherto elusive 
problem for which only computer solu
tions are attainable. John Maddox 
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