Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Successive incorporation of force-generating units in the bacterial rotary motor

Abstract

Mot mutants of Escherichia coli are paralysed: their flagella appear to be intact but do not rotate1 . The motA and motB gene products are found in the cytoplasmic membrane2; they do not co-purify with flagellar basal bodies isolated in neutral detergents1. Silverman et al. found that mot mutants could be ‘resurrected’ through protein synthesis directed by λ transducing phages carrying the wild-type genes2. Here, we have studied this activation at the level of a single flagellar motor. Cells of a motB strain carrying plasmids in which transcription of the wild-type motB gene was controlled by the lac promoter were tethered to a glass surface by a single flagellum. These cells began to spin within several minutes after the addition of a lac inducer, and their rotational speed changed in a series of equally spaced steps. As many as 7 steps were seen in individual cells and, from the final speeds attained, as many as 16 steps could be inferred. These experiments show that each flagellar motor contains several independent force-generating units comprised, at least in part, of motB protein.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Armstrong, J. B. & Adler, J. Genetics 61, 61–66 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Silverman, M., Matsumura, P. & Simon, M. Proc. natn. Acad. Sci. U.S.A. 73, 3126–3130 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Ridgway, H. F., Silverman, M. & Simon, M. I. J. Bact. 132, 657–665 (1977).

    CAS  PubMed  Google Scholar 

  4. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W. & Adler, J. Nature 249, 73–77 (1974).

    Article  ADS  Google Scholar 

  5. Block, S. M., Segall, J. E. & Berg, H. C. Cell 31, 215–226 (1982).

    Article  CAS  Google Scholar 

  6. Block, S. M., Segall, J. E. & Berg, H. C. J. Bact. 154, 312–323 (1983).

    CAS  PubMed  Google Scholar 

  7. Segall, J. E., Manson, M. D. & Berg, H. C. Nature 296, 855–857 (1982).

    Article  ADS  CAS  Google Scholar 

  8. DePamphilis, M. L. & Adler, J. J. Bact. 105, 384–395 (1971).

    CAS  PubMed  Google Scholar 

  9. Coulton, J. W. & Murray, R. G. E. J. Bact. 136, 1037–1049 (1978).

    CAS  PubMed  Google Scholar 

  10. Ishihara, A., Yamaguchi, S. & Hotani, H. J. Bact. 145, 1082–1084 (1981).

    CAS  PubMed  Google Scholar 

  11. Berg, H. C. Nature 249, 77–79 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Garcia de la Torre, J. & Bloomfield, V. A. Q. Rev. Biophys. 14, 81–139 (1981).

    Article  CAS  Google Scholar 

  13. Berg, H. C. in Cell Motility Vol. 3, Bk C (eds Goldman, R., Pollard, T. & Rosenbaum, J.) 47–56 (Cold Spring Harbor Laboratory, New York, 1976).

  14. Berg, H. C. & Turner, L. Nature 278, 349–351 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Manson, M. D., Tedesco, P. M. & Berg, H. C. J. molec. Biol. 138, 541–561 (1980).

    Article  CAS  Google Scholar 

  16. Berg, H. C. & Khan, S. in Mobility and Recognition in Cell Biology (eds Sund. H. & Veeger, C.) 486–497 (Walter de Gruyter, Berlin, 1983).

  17. Slonczewski, J. L., Rosen, B. P., Alger, J. R. & Macnab, R. M. Proc. natn. Acad. Sci. U.S.A. 78, 6271–6275 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Boyd, A., Mandel, G. & Simon, M. I. Symp. Soc. exp. Biol. 35, 123–137 (1982).

    CAS  PubMed  Google Scholar 

  19. Hazelbauer, G. L., Mesibov, R. E. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 64, 1300–1307 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Gilbert, W. & Müller-Hill, B. Proc. natn. Acad. Sci. U.S.A. 56, 1891–1895 (1966).

    Article  ADS  CAS  Google Scholar 

  21. Ishihara, A., Segall, J. E., Block, S. M. & Berg, H. C. J. Bact. 155, 228–237 (1983).

    CAS  PubMed  Google Scholar 

  22. Silverman, M. & Simon, M. Nature 264, 577–580 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Armstrong, J. B., Adler, J. & Dahl, M. M. J. Bact. 93, 390–398 (1967).

    CAS  Google Scholar 

  24. Müller-Hill, B., Crapo, L. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 59, 1259–1263 (1968).

    Article  ADS  Google Scholar 

  25. Rodriguez, R. L., Bolivar, F., Goodman, H. M., Boyer, H. W. & Betlach, M. in Molecular Mechanisms in the Control of Gene Expression (eds Nierlich, D. P., Rutter, W. J. & Fox, C. F.) 471–495 (Academic, New York, 1976).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, S., Berg, H. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309, 470–472 (1984). https://doi.org/10.1038/309470a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309470a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing