Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of phosphofructokinase—gene duplication and creation of new effector sites

Abstract

Phosphofructokinases (PFK; EC 2.7.1.11) are tetrameric enzymes that have a key role in the regulation of glycolysls1; as such, they are subject to allosteric activation and inhibition by various metabolites2. Eukaryotic PFKs are about twice the size of prokaryotic enzymes and are regulated by a wider repertoire of effectors: for example, the subunit molecular weights of rabbit muscle (RM) PFK and Bacillus stearothermophilus (Bs) PFK are 82,000 and 36,000, respectively. Both enzymes are activated by ADP (or AMP), but RM-PFK is also activated by fructose bisphosphates (FBP) and inhibited by ATP and citrate. This, together with other evidence, has led to speculation that mammalian PFKs have evolved by duplication of a prokaryotic gene3–5, although previous peptide analysis6 failed to reveal internal homology in RM-PFK. Here we demonstrate clear homology among the N- and C-halves of RM-PFK and Bs-PFK, thus establishing an evolutionary relationship by series gene duplication and divergence. Furthermore, detailed knowledge of the Bs-PFK structure provides the basis for inferences concerning the structural organization of RM-PFK and the evolution of new effector sites in the enzyme tetramer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Uyeda, K. Adv. Enzym. Related Areas molec. Biol. 48, 193–244 (1979).

    CAS  Google Scholar 

  2. Kemp, R. G. & Foe, L. G. Molec. cell. Biochem. 57, 147–154 (1983).

    Article  CAS  Google Scholar 

  3. Paetkau, V. H., Younathan, E. S. & Lardy, H. A. J. molec. Biol. 33, 721–731 (1968).

    Article  CAS  Google Scholar 

  4. Coffee, C. J., Aaronson, R. P. & Frieden, C. J. biol Chem. 248, 1381–1387 (1973).

    CAS  PubMed  Google Scholar 

  5. Emerk, K. & Frieden, C. Archs Biochem. Biophys. 164, 233–240 (1974).

    Article  CAS  Google Scholar 

  6. Walker, I. D., Harris, J. I., Runswick, M. J. & Hudson, P. Eur. J. Biochem. 68, 255–269 (1976).

    Article  CAS  Google Scholar 

  7. Kolb, E., Hudson, P. J. & Harris, J. I. Eur. J. Biochem. 108, 587–597 (1980).

    Article  CAS  Google Scholar 

  8. Fitch, W. M. J. molec. Biol. 49, 1–14 (1970).

    Article  CAS  Google Scholar 

  9. Evans, P. R. & Hudson, P. J. Nature 279, 500–504 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Evans, P. R., Farrants, G. W. & Hudson, P. J. Phil. Trans. R. Soc. B293, 53–62 (1981).

    Article  CAS  Google Scholar 

  11. Keim, P., Heinrikson, R. L. & Fitch, W. M. J. molec. Biol. 151, 179–197 (1981).

    Article  CAS  Google Scholar 

  12. Rossmann, M. G., Liljas, A. Branden, C. I. & Banaszak, L. J. The Enzymes Vol. 11 (ed. Boyer, P. D.) 61–102 (Academic, New York, 1975).

    Google Scholar 

  13. Paetkau, V. & Lardy, H. A. J. biol. Chem. 242, 2035–2042 (1967).

    CAS  PubMed  Google Scholar 

  14. Lad, P. M., Hill, D. E. & Hammes, G. G. Biochemistry 12, 4303–4309 (1973).

    Article  CAS  Google Scholar 

  15. Foe, L. G., Latshaw, S. P. & Kemp, R. G. Biochemistry 22, 4601–4606 (1983).

    Article  CAS  Google Scholar 

  16. Foe, L. G. & Trujillo, J. L. J. biol. Chem. 255, 10537–10541 (1980).

    CAS  PubMed  Google Scholar 

  17. Gottschalk, M. E., Latshaw, S. P. & Kemp, R. G. Biochemistry 22, 1082–1087 (1983).

    Article  CAS  Google Scholar 

  18. Kemp, R. G. & Krebs, E. G. Biochemistry 6, 423–434 (1967).

    Article  CAS  Google Scholar 

  19. Hill, D. E. & Hammes, G. G. Biochemistry 14, 203–213 (1975).

    Article  CAS  Google Scholar 

  20. Kemp, R. G., Foe, L. G., Latshaw, S. P., Poorman, R. A. & Heinrikson, R. L. J. biol. Chem. 256, 7282–7286 (1981).

    CAS  PubMed  Google Scholar 

  21. Weng, L., Heinrikson, R. L. & Mansour, T. E. J. biol. Chem. 255, 1492–1496 (1980).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poorman, R., Randolph, A., Kemp, R. et al. Evolution of phosphofructokinase—gene duplication and creation of new effector sites. Nature 309, 467–469 (1984). https://doi.org/10.1038/309467a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309467a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing