Abstract
Cohen and O'Nions1 noted that basalts from the Mid-Atlantic Ridge (MAR) display greater diversity of Pb, Nd and Sr isotopes than do basalts from the East Pacific Rise (EPR). They attributed this difference not to greater isotopic heterogeneity beneath the MAR, but rather to more effective mixing (to eradicate heterogeneity) beneath the EPR. Allègre et al.2 reached the same conclusion on the basis of isotope data including noble gas isotopic data. To test this idea further, I compare here the average spreading rate of nine portions of the mid-ocean ridge system with the measured 87Sr/86Sr diversity of basalts. This shows that the maximum observed 87Sr/86Sr diversity is inversely proportional to spreading rate. Furthermore, globally averaged eruption rates for mantle-derived rocks of intra-oceanic island arcs, ocean islands and the mid-ocean ridge system exhibit a negative correlation with 87Sr/86Sr diversity. These results suggest that the upper mantle is everywhere heterogeneous on a small scale and that the extent of observed heterogeneity is a function of mixing. Independent geophysical and petrological evidence for the existence of steady-state crustal magma chambers beneath fast-spreading ridges and their absence below slow spreading ridges favours this hypothesis because mixing is enhanced by the presence of a magma chamber. Alternatively, mixing during melt production in the mantle, during melt segregation or during ascent could also result in the observed patterns if the degree of mixing is related to eruption rate. Large heterogeneities (mantle plumes?) are required to explain why isotopic variations are well correlated geographically in some places but not in others.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Cohen, R. S. & O'Nions, R. K. J. Petrol. 23, 299–324 (1982).
Allègre, C. J., Dupre, B. & Hamelin, B. Trans. Am. geophys. Un. 64, 324 (1983).
Zindler, A., Hart, S. R., Frey, F. A. & Jakobsson, S. P. Earth planet. Sci. Lett. 45, 249–262 (1979).
Zindler, A., Staudigel, H. & Batiza, R. Earth planet. Sci. Lett. (in the press).
Allègre, C. J., Brevart, O., Dupre, B. & Minster, J.-F. Phil. Trans. R. Soc. A297, 447–477 (1980).
Davies, G. F. Nature 290, 208–213 (1981).
Morris, J. D. & Hart, S. R. Geochim. cosmochim. Acta 47, 2015–2030 (1983).
Batiza, R. & Vanko, D. J. geophys. Res. (in the press).
Gurney, J. J. & Harte, B. Phil. Trans. R. Soc. A297, 273–293 (1980).
Frey, F. A. & Prinz, M. Earth planet. Sci. Lett. 38, 129–176 (1978).
Lonsdale, P. Mar. geophys. Res. 3, 251–293 (1977).
Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C. & LePichon, X. J. geophys. Res. 73, 2119–2136 (1968).
Sclater, J. G. et al. J. geophys. Res. 81, 1857–1869 (1976).
Eaby, J., Clague, D. A. & Delaney, J. R. J. geophys. Res. (in the press).
Schilling, J.-G. et al. Am. J. Sci. 283, 510–586 (1983).
Dupre, B. & Allègre, C. J. Nature 286, 17–22 (1980).
LeRoex, A. P. et al. J. Petrol. 24, 267–318 (1983).
Crisp, J. A. J. volcanol. Geotherm. Res. 20, 177–211 (1984).
Bender, J. F., Langmuir, C. H. & Hanson, G. N. J. Petrol. 25, 213–254 (1984).
Perfit, M. R., Fornari, D. J., Malahoff, A. & Embley, R. W. J. geophys. Res. 88, 10,551–10,572 (1983).
Schilling, J.-G. & Sigurdsson, H. Nature 282, 370–375 (1979).
Macdonald, K. C. & Fox, P. J. Nature 302, 55–58 (1983).
Lonsdale, P. Bull. geol. Soc. Am. (in the press).
O'Hara, M. J. & Mathews, R. E. J. geol. Soc. Lond. 138, 237–277 (1981).
Rosendahl, B. R. J. geophys. Res. 81, 5305–5314 (1976).
Natland, J. H. DSDP Init. Rep. Leg 54, 833–850 (1980).
Orcutt, J. et al. Nature 256, 475–476 (1975).
Morel, J. M. & Hekinian, R. Contr. Miner. Petrol. 72, 425–436 (1980).
Bryan, W. B. & Moore, J. B. Bull. geol. Soc. Am. 88, 556–570 (1977).
Langmuir, C. H., Bender, J. F., Bence, A. E., Hanson, G. N. & Taylor, S. R. Earth planet. Sci. Lett. 36, 133–156 (1977).
Hanks, T. C. J. geophys. Res. 76, 537–544 (1971).
Turcotte, D. L. & Ahern, J. L. J. geophys. Res. 83, 767–772 (1978).
Bottinga, Y. & Allègre, C. J. Phil. Trans. R. Soc. A228, 501–525 (1978).
Sleep, N. H. Bull. geol. Soc. Am. 85, 1225–1232 (1974).
Stolper, E., Walker, D., Hager, B. H. & Hays, J. F. J. geophys. Res. 86, 6261–6271 (1981).
Spera, F. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 268–324 (Princeton University Press, 1980).
Presnall, D. C., Dixon, J. R., O'Donnell, T. H. & Dixon, S. A. J. Petrol. 20, 3–35 (1979).
Brace, W. F. & Kohlstedt, D. L. J. geophys. Res. 86, 6258–6252 (1980).
Feigenson, M. D. & Spera, F. J. Geology 9, 531–533 (1981).
Richter, F. M. & Ribe, N. M. Earth planet. Sci. Lett. 43, 212–222 (1979).
Richter, F. M., Daly, S. F. & Nataf, H.-C. Earth planet. Sci. Lett. 60, 178–194 (1982).
Dupre, B. & Allègre, C. J. Nature 303, 142–146 (1983).
White, W. M. & Hoffman, A. W. Nature 296, 821–825 (1982).
Cohen, R. S., Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. Nature 283, 149–153 (1980).
Dupre, B., Lambret, B., Rousseau, D. & Allègre, C. J. Nature 294, 552–554 (1981).
Verna, S. P. & Schilling, J.-G. J. geophys. Res. 87, 838–10,856 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Batiza, R. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature 309, 440–441 (1984). https://doi.org/10.1038/309440a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/309440a0
This article is cited by
-
Highly heterogeneous depleted mantle recorded in the lower oceanic crust
Nature Geoscience (2019)
-
Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean
Nature (2003)
-
Mixing of magmas from enriched and depleted mantle sources in the northeast Pacific: West Valley segment, Juan de Fuca Ridge
Contributions to Mineralogy and Petrology (1995)
-
Geochemistry of tholeiites from Lanai, Hawaii
Contributions to Mineralogy and Petrology (1992)
-
Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: implications for the origin of island arc melts
Contributions to Mineralogy and Petrology (1990)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.