Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years

Abstract

A network of temperature-sensitive tree-ring-density chronologies provides circum-hemisphere information on year-by-year changes in summer warmth in different regions of the northern boreal forest1. Combining these data into a single time-series provides a good summer-temperature proxy for northern high latitudes and the Northern Hemisphere as a whole2. Here we use this well dated, high-resolution composite time-series to suggest that large explosive volcanic eruptions produced different extents of Northern Hemisphere cooling during the past 600 years. The large effect of some recent eruptions is apparent, such as in 1816, 1884 and 1912, but the relative effects of other known, and perhaps some previously unknown, pre-nineteenth-century eruptions are also evaluated. The most severe short-term Northern Hemisphere cooling event of the past 600 years occurred in 1601, suggesting that either the effect on climate of the eruption of Huaynaputina, Peru, in 1600 has previously been greatly underestimated, or another, as yet unidentified, eruption occurred at the same time. Other strong cooling events occurred in 1453, seemingly confirming a 1452 date for the eruption of Kuwae, southwest Pacific, and in 1641/42, 1666, 1695 and 1698.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NHD1 average of NH tree-ring-density chronologies.
Figure 2: Selected spatial patterns of tree-ring density.

Similar content being viewed by others

References

  1. Schweingruber, F. H. & Briffa, K. R. in Climate Variations and Forcing Mechanisms of the Last 2000 Years(eds Jones, P. D., Bradley, R. S. & Jouzel, J.) 43–66 (Springer, Berlin, 1996).

    Book  Google Scholar 

  2. Briffa, K. R. et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391, 678–682 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Briffa, K. R., Jones, P. D. & Schweingruber, F. H. Summer temperatures across northern North America: regional reconstructions from 1760 using tree-ring densities. J. Geophys. Res. 99(D12), 25835–25844 (1994).

    Article  ADS  Google Scholar 

  4. Briffa, K. R., Jones, P. D. & Schweingruber, F. H. Tree-ring reconstructions of summer temperature patterns across western North America since 1600. J. Clim. 5, 735–754 (1992).

    Article  ADS  Google Scholar 

  5. Jones, P. D., Briffa, K. R. & Schweingruber, F. H. Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophys. Res. Lett. 22, 1333–1336 (1995).

    Article  ADS  Google Scholar 

  6. Bradley, R. S. & Jones, P. D. in Climate Since A.D. 1500(eds Bradley, R. S. & Jones, P. D.) 606–622 (Routledge, London, 1992).

    Google Scholar 

  7. Cole-Dai, J., Mosley-Thompson, E. & Thompson, L. G. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores. J. Geophys. Res. 102, 16761–16771 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Crowley, T. J., Criste, T. A. & Smith, N. R. Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change. Geophys. Res. Lett. 20, 209–212 (1993).

    Article  ADS  Google Scholar 

  9. Jones, P. D. & Briffa, K. R. Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal and seasonal details. Holocene 2, 165–179 (1992).

    Article  ADS  Google Scholar 

  10. Lamb, H. H. Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Phil. Trans. R. Soc. Lond. A 266, 425–553 (1970).

    Article  ADS  Google Scholar 

  11. Newhall, G. C. & Self, S. The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87, 1231–1238 (1982).

    Article  ADS  Google Scholar 

  12. Robock, A. & Free, M. P. in Climatic Variations and Forcing Mechanisms of the Last 2000 Years(eds Jones, P. D., Bradley, R. S. & Jouzel, J.) 533–546 (Springer, Berlin, 1996).

    Book  Google Scholar 

  13. Harington, C. R. (ed.) The Year Without a Summer?(Canadian Museum of Nature, Ottawa, 1992).

    Google Scholar 

  14. Simkin, T. & Siebert, L. Volcanoes of the World2nd edn (Geoscience, Tucson, 1994).

    Google Scholar 

  15. Hammer, C. U., Clausen, H. B. & Dansgaard, W. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288, 230–235 (1980).

    Article  ADS  Google Scholar 

  16. Zielinski, G. A. et al. Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264, 948–952 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Moore, J. C., Narita, H. & Maeno, N. Acontinuous 770-year record of volcanic activity from East Antarctica. J. Geophys. Res. 96, 17353–17359 (1991).

    Article  ADS  Google Scholar 

  18. Delmas, R. J., Kirchner, S., Palais, J. M. & Petit, J. R. 1000 years of explosive volcanism recorded at the South Pole. Tellus B 44, 335–350 (1992).

    Article  ADS  Google Scholar 

  19. Langway, C. C. J, Osada, K., Clausen, H. B., Hammer, C. U. & Shoji, H. A10-century comparison of prominent volcanic events in ice cores. J. Geophys. Res. 100, 16241–16247 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Morgan, V. I. et al. Site information and initial results from deep ice drilling on Law Dome, Antarctica. J. Glaciol. 43, 3–10 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Dai, J. E., Mosley-Thompson, E. & Thompson, L. G. Ice core evidence for an explosive tropical eruption 6 years preceding Tambora. J. Geophys. Res. 96, 17361–17366 (1991).

    Article  ADS  Google Scholar 

  22. Self, S., Rampino, M. R. & Carr, M. J. Areappraisal of the 1835 eruption of Cosigüina and its atmospheric impact. Bull. Volcanol. 52, 57–65 (1989).

    Article  ADS  Google Scholar 

  23. Scuderi, L. C. Tree-ring evidence for climatically effective volcanic eruptions. Quat. Res. 34, 67–85 (1990).

    Article  Google Scholar 

  24. Zielinski, G. A. Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland ice sheet Project 2 ice core. J. Geophys. Res. 100, 20937–20955 (1995).

    Article  ADS  Google Scholar 

  25. Palais, J. M., Kirchner, S. & Delmas, R. J. Identification of some global volcanic horizons by major elemental analysis of fine ash in Antarctic ice. Ann. Glaciol. 14, 216–220 (1990).

    Article  ADS  Google Scholar 

  26. Thompson, L. G., Mosley-Thompson, E., Dansgaard, W. & Grootes, P. M. The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science 234, 361–364 (1986).

    Article  ADS  CAS  Google Scholar 

  27. de Silva, S. L. & Zielinski, G. A. Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature 393, 455–458 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Robin, C., Monzier, M. & Eissen, J.-P. Formation of the mid-fifteenth century Kuwae caldera (Vanuatu) by an initial hydroelastic and subsequent ignimbritic eruption. Bull. Volcanol. 56, 170–183 (1994).

    Article  ADS  Google Scholar 

  29. Monzier, M., Robin, C. & Eissen, J.-P. Kuwae (1425 AD): the forgotten caldera. J. Volcanol. Geotherm. Res. 59, 207–218 (1993).

    Article  ADS  Google Scholar 

  30. Pang, K. D. Climate impact of the mid-fifteenth century Kuwae caldera formation, as reconstructed from historical and proxy data. Eos(Fall Suppl.) 74(43), 106 (1993).

    Google Scholar 

  31. LaMarche, V. C. & Hirschboeck, K. K. Frost rings in trees as records of major volcanic eruptions. Nature 307, 121–126 (1984).

    Article  ADS  Google Scholar 

  32. Delfin, F. G. J et al. Geological, 14 C, and historical evidence for a 17th century eruption of Parker volcano, Mindanao, Philippines. J. Geol. Soc. Philippines 52, 25–42 (1997).

    Google Scholar 

  33. Blong, R. J. The Time of Darkness(Australian Nat. Univ. Press, Canberra, 1982).

    Google Scholar 

  34. Oldfield, F., Appleby, P. G. & Thompson, R. Palaeoecological studies of lakes in the highlands of Papua New Guinea. I. The chronology of sedimentation. J. Ecol. 68, 457–477 (1980).

    Article  CAS  Google Scholar 

  35. Stuiver, M. & Becker, B. High-precision decadal calibration of the radiocarbon time scale, A.D. 1950–6000 B.C. Radiocarbon 35, 35–65 (1993).

    Article  Google Scholar 

  36. Lean, J., Beer, J. & Bradley, R. Reconstruction of solar irradiance since 1610: Implications for climatic change. Geophys. Res. Lett. 22, 3195–3198 (1995).

    Article  ADS  Google Scholar 

  37. 37. Osborn, T. J., Briffa, K. R. & Jones, P. D. Adjusting variance for sample-size in tree-ring chronologies and other regional-mean timeseries. Dendrochronologia 15, (in the press).

  38. 38. Briffa, K. R. in Analysis of Climatic Variability: Applications of Statistical Techniques(eds von Storch, H. & Navarra, A.) 77–94 (Springer, Berlin, 1995).

    Book  Google Scholar 

Download references

Acknowledgements

The current development of the Northern Hemisphere densitometric network is funded by the Swiss National Science Foundation (F.H.S.) and the European Community under ADVANCE-10K (K.R.B.). P.D.J. is supported by the US Department of Energy, and T.J.O. by NERC. We thank E. Cook, T. Crowley, M. Free, V. Morgan, E. Mosley-Thompson, C. Newhall, F. Oldfield, A. Robock and S.Self for advice and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Briffa.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briffa, K., Jones, P., Schweingruber, F. et al. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393, 450–455 (1998). https://doi.org/10.1038/30943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30943

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing