Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible inhibition of translation by Xenopus oocyte-specific proteins


A characteristic of growing oocytes of all animal species is the synthesis and accumulation of messenger RNA which is destined to be used primarily by the early embryo1,2. The mechanism(s) which regulates the translation of this maternal mRNA remains unknown. However, the inability of the oocyte to translate all of its putative mRNA has been attributed to at least three limitations: (1) The rate of translation is limited by the availability of components of the translational apparatus other than mRNA3,4, (2) the structural organization of the mRNA prevents translation5,6, and (3) proteins associated with the mRNA prevent translation7,8. Several investigators have suggested that proteins associated with maternal mRNA suppress translation in sea urchin eggs7–10, although others claim that such results may be due to experimental artefacts11,12. Oocyte-specific proteins have been identified in association with non-translating poly(A)+ mRNAs from Xenopus laevis oocytes13–16, and we report here that when these proteins are reconstituted with mRNAs in vitro the translation of the mRNAs in vitro is reversibly repressed. The implication is that these proteins are involved in the regulation of translation of stored maternal mRNAs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Davidson, E. H. Gene Activity in Early Development (Academic, New York, 1976).

    Google Scholar 

  2. Smith, L. D. & Richter, J. D. in Fertilization (eds Monroy, A. & Metz, C.) (in the press).

  3. Laskey, R. A. Mills, A. D., Gurdon, J. B. & Partington, G. A. Cell 11, 345–351 (1977).

    Article  CAS  Google Scholar 

  4. Richter, J. D. & Smith, L. D. Cell 27, 183–191 (1981).

    Article  CAS  Google Scholar 

  5. Anderson, D. M. et al. J. molec. Biol. 155, 181–309 (1982).

    Article  Google Scholar 

  6. Richter, J. D., Anderson, D. M., Davidson, E. H. & Smith, L. D. J. molec. Biol. 173, 227–242 (1984).

    Article  CAS  Google Scholar 

  7. Ilan, J. & Ilan, J. Devl Biol. 66, 375–385 (1978).

    Article  CAS  Google Scholar 

  8. Jenkins, N. A., Kaumeyer, J. F., Young, E. M. & Raff, R. A. Devl Biol. 63, 279–298 (1978).

    Article  CAS  Google Scholar 

  9. Maundrell, K. et al. Molec. biol. Rep., 43–52 (1979).

  10. Bergmann, I. E., Cereghini, S., Geohegan, I. & Brawerman, G. J. molec. Biol. 156, 567–582 (1982).

    Article  CAS  Google Scholar 

  11. Moon, R. T., Danilchik, M. V. & Hille, M. B. Devl Biol. 93, 389–403 (1982).

    Article  CAS  Google Scholar 

  12. Moon, R. T. Differentiation 24, 13–23 (1983).

    Article  CAS  Google Scholar 

  13. Darnbrough, C. H. & Foord, P. J. Devl Biol. 50, 285–301 (1976).

    Article  CAS  Google Scholar 

  14. Darnbrough, C. H. & Ford, P. J. Eur. J. Biochem. 113, 415–424 (1981).

    Article  CAS  Google Scholar 

  15. Dixon, L. & Ford, P. J. Devl Biol. 93, 478–497 (1982).

    Article  CAS  Google Scholar 

  16. Richter, J. D. & Smith, L. D. J. biol. Chem. 258, 4864–4869 (1983).

    CAS  PubMed  Google Scholar 

  17. Pullman, J. M. & Martin, T. E. J. Cell Biol. 97, 99–111 (1983).

    Article  CAS  Google Scholar 

  18. Economidis, I. V. & Pederson, T. Proc. natn. Acad. Sci. U.S.A. 80, 4296–4300 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Baer, B. W. & Kornberg, R. D. J. Cell Biol. 96, 717–721 (1983).

    Article  CAS  Google Scholar 

  20. Spirin, A. S. Eur. J. Biochem. 10, 20–35 (1969).

    Article  CAS  Google Scholar 

  21. Wasserman, W. J., Richter, J. D. & Smith, L. D. Devl Biol. 89, 152–158 (1982).

    Article  CAS  Google Scholar 

  22. Richter, J. D., Wasserman, W. J. & Smith, L. D. Devl Biol. 89, 159–167 (1982).

    Article  CAS  Google Scholar 

  23. Richter, J. D. & Evers, D. C. J. biol. Chem. 259, 2190–2194 (1984).

    CAS  PubMed  Google Scholar 

  24. Wallace, R. A., Jared, D. W., Dumont, J. N. & Sega, M. W. J. exp. Zool. 18, 321–334 (1974).

    Google Scholar 

  25. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  26. Richter, J. D., Jones, N. C. & Smith, L. D. Proc. natn. Acad. Sci. U.S.A. 79, 3789–3793 (1983).

    Article  ADS  Google Scholar 

  27. Spirin, A. S., Belitsina, N. V. & Lerman, M. I. J. molec. Biol. 14, 611–615 (1965).

    Article  CAS  Google Scholar 

  28. Kloetzel, P.-M., Whitfield, W. & Sommerville, J. Nucleic Acids Res. 9, 605–621 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richter, J., Smith, L. Reversible inhibition of translation by Xenopus oocyte-specific proteins. Nature 309, 378–380 (1984).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing