Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role for microsomal Ca storage in mammalian neurones?

Abstract

Alterations in the intracellular concentration of calcium ions ([Ca2+]i) are increasingly being found to be associated with regulatory functions in cells of all kinds. In muscle, an elevation of [Ca2+]i, is the final link in excitation–contraction coupling1–3 while at nerve endings and in secretory cells, similar rises in [Ca2+]i, are thought to mediate exocytosis4,5. The discovery of calcium-activated ion channels6,7 indicated a role for intracellular calcium in the regulation of membrane excitability. Calcium transients associated with either intracellular release or the inward movement of Ca2+ across the membrane have been recorded in molluscan neurons8,9 and more recently in neurones of bullfrog sympathetic ganglia10. Here, we report the first recordings of calcium transients in single mammalian neurones. In these experiments we have found that the methylxanthine, caffeine, causes the release of calcium from a labile intracellular store which can be refilled by Ca2+ entering the cell during action potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blinks, J. R., Rudel, R. & Taylor, S. R. J. Physiol., Lond. 277, 291–323 (1978).

    Article  CAS  Google Scholar 

  2. Neering, I. R. & Morgan, K. G. Nature 288, 585–587 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Ashley, C. C. & Ridgway, E. B. J. Physiol., Lond. 209, 105–130 (1970).

    Article  CAS  Google Scholar 

  4. Katz, B. The Release of Neural Transmitter Substance (Liverpool University Press, 1960).

    Google Scholar 

  5. Baker, P. F. in Recent Advances in Physiology (ed. Linden, R. J.) 51–86 (Churchill Livingstone, London, 1974).

    Google Scholar 

  6. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Schwarz, W. & Passow, H. A. Rev. Physiol. 45, 359–374 (1983).

    Article  CAS  Google Scholar 

  8. Gorman, A. L. F. & Thomas, M. V. J. Physiol., Lond. 308, 259–285 (1980).

    Article  CAS  Google Scholar 

  9. Gorman, A. L. F. & Thomas, M. V. J. Physiol., Lond. 308, 287–313 (1980).

    Article  CAS  Google Scholar 

  10. Smith, S. J., MacDermott, A. B. & Weight, F. F. Nature 304, 350–352 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Dichter, M. A. & Fischbach, G. D. J. Physiol., Lond. 267, 281–298 (1977).

    Article  CAS  Google Scholar 

  12. Dunlap, K. & Fischbach, G. D. J. Physiol. Lond. 317, 519–535 (1981).

    Article  CAS  Google Scholar 

  13. Allen, D. G. & Blinks, J. R. in Detection and Measurement of Free Ca2+ in Cells (eds Ashley, C. C. & Campbell, A. K.) 159–174 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  14. Brinley, F. J. A. Rev. Biophys. Bioengng 7, 363–392 (1978).

    Article  CAS  Google Scholar 

  15. Baker, P. F. & Schlaepfer, W. W. J. Physiol., Lond. 276, 103–125 (1978).

    Article  CAS  Google Scholar 

  16. Tillotson, O. & Gorman, A. L. F. Nature 286, 816–817 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1977).

    Article  CAS  Google Scholar 

  18. Fabiato, A. & Fabiato, F. Circulation Res. 40, 119–129 (1977).

    Article  CAS  Google Scholar 

  19. Herbette, L., Messineo, F. C. & Katz, A. M. A. Rev. Pharmac. Tox. 22, 413–434 (1982).

    Article  CAS  Google Scholar 

  20. Yoshida, S. & Matsuda, Y. J. Neurophysiol. 42, 1134–1145 (1979).

    Article  CAS  Google Scholar 

  21. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Montague, W. & Cook, J. R. Biochem. J. 122, 115–120 (1971).

    Article  CAS  Google Scholar 

  23. De Peyer, J., Cachelin, A. B., Levitan, I. B. & Reuter, H. Proc. natn. Acad. Sci U.S.A. 79, 4207–4211 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Standen, N. B. Nature 293, 158–159 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Plant, T. D. & Standen, N. B. J. Physiol., Lond. 321, 273–285 (1981).

    Article  CAS  Google Scholar 

  26. Klein, M. & Kandel, E. R. Proc. natn. Acad. Sci U.S.A. 75, 3512–3516 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Blaustein, M. P., Ratzlaff, R. W. & Schweitzer, E. S. Fedn Proc. 39, 2790–2795 (1980).

    CAS  Google Scholar 

  28. Alvarez-Leefmans, F. J., Gamino, S. M. & Rink, T. J. J. Physiol., Lond. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neering, I., McBurney, R. Role for microsomal Ca storage in mammalian neurones?. Nature 309, 158–160 (1984). https://doi.org/10.1038/309158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309158a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing