Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird


A variety of animal species is sensitive to changes in natural and artificial magnetic fields. The receptor mechanism for this ability has been described for a few species, most notably magnetotactic bacteria1 and potential receptors have been reported for such animals as honey bees, homing pigeons and dolphins2–5. Some species of migratory birds also perceive changes in magnetic field6. We show here that the bobolink (Dolichonyx oryzivorus), which has the longest transequatorial migratory path of any New World land bird7, responds to changes in the Earth's magnetic field indicating that it uses the magnetic information as a primary orientation cue during its migration. We suggest that the ability of the bobolink to detect magnetic fields is associated with deposits of iron oxide (probably magnetite) that lie in sheaths of tissues around the olfactory nerve and bulb and between the eyes, and also in bristles which project into the nasal cavity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Blakemore, R. P. A. Rev. Microbiol. 36, 217–238 (1982).

    CAS  Article  Google Scholar 

  2. 2

    Gould, J. L., Kirschvink, J. L. & Deffeyes, K. S. Science 201, 1026–1028 (1978).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kuterbach, D. A., Walcott, B., Reeder, R. J. & Frankel, R. B. Science 218, 695–697 (1982).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Walcott, C., Gould, J. L. & Kirschvink, J. L. Science 205, 1027–1029 (1979).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Zoeger, J., Dunn, J. R. & Fuller, M. Science 213, 892–894 (1981).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Wiltschko, W. NASA Spec. Publ. No. SP-262, 569–578 (1972).

  7. 7

    Emlen, S. T. & Emlen, J. T. Auk 83, 361–367 (1966).

    Article  Google Scholar 

  8. 8

    Beason, R. C. Anim. Behav. (submitted).

  9. 9

    Wiltschko, W. & Wiltschko, R. Z. Tierpsychol. 39, 265–282 (1975).

    Article  Google Scholar 

  10. 10

    Wiltschko, W. & Wiltschko, R. Z. Tierpsychol. 37, 337–355 (1975).

    CAS  Article  Google Scholar 

  11. 11

    Bingman, V. P. Anim. Behav. 29, 962–963 (1981).

    Article  Google Scholar 

  12. 12

    Bingman, V. P. Behaviour 87, 43–53 (1983).

    Article  Google Scholar 

  13. 13

    Wiltschko, W. & Wiltschko, R. Science 176, 62–64 (1972).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Walcott, C. & Green, R. P. Science 184, 180–182 (1974).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Beason, R. C. & Brennan, W. J. J. exp. Biol. (submitted).

  16. 16

    Evans, M. E. & McElhinny, M. W. J. Geomag. Geoelect. 21, 757–773 (1969).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Evans, M. E., McElhinny, M. W. & Gifford, A. C. Earth planet. Sci. Lett. 4, 142–146 (1968).

    ADS  Article  Google Scholar 

  18. 18

    McElhinny, M. W. Palaeomagnetism and Plate Tectonics (Cambridge Univ., London, 1973).

    Google Scholar 

  19. 19

    Stacey, F. D. Adv. Phys. 12, 45–133 (1963).

    ADS  Article  Google Scholar 

  20. 20

    Kirschvink, J. L. in Biomagnetism (eds Williamson, S. J., Romani, G.-L., Kaufman, L. & Modenza, I.) 501–531 (Plenum, New York, 1983).

    Book  Google Scholar 

  21. 21

    Yorke, E. D. J. theor. Biol. 77, 101–105 (1979).

    CAS  Article  Google Scholar 

  22. 22

    Yorke, E. D. J. theor. Biol. 89, 533–537 (1981).

    CAS  Article  Google Scholar 

  23. 23

    Walcott, B. & Walcott, C. in Avian Navigation (eds Papi, F. & Wallraff, H. G.) 338–343 (Springer, Berlin, 1980).

    Google Scholar 

  24. 24

    Kirschvink, J. L. & Gould, J. L. BioSystems 13, 181–201 (1981).

    CAS  Article  Google Scholar 

  25. 25

    Papi, F. in Avian Navigation (eds Papi, F. & Wallraff, H. G.) 149–159 (Springer, Berlin, 1982).

    Google Scholar 

  26. 26

    Towe, K. M. & Lowenstam, H. A. J. ultrastruct. Res. 17, 1–13 (1967).

    CAS  Article  Google Scholar 

  27. 27

    Towe, K. M., Lowenstam, H. A. & Nesson, M. H. Science 142, 63–64 (1963).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kirschvink, J. L. & Lowenstam, H. A. Earth planet. Sci. Lett. 44, 193–205 (1979).

    ADS  Article  Google Scholar 

  29. 29

    Batschelet, E. Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms (AIBS, Washington, 1965).

    Google Scholar 

  30. 30

    Mardia, K. V. Statistics of Directional Data (Academic, New York, 1972).

    MATH  Google Scholar 

  31. 31

    Zar, J. H. Biostatistical Analysis (Prentice-Hall, Englewood Cliffs, 1974).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beason, R., Nichols, J. Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309, 151–153 (1984).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing