Disruption of kilometre-sized asteroids by energetic collisions

Abstract

Recent numerical studies1,2,3,4,5 suggest that ‘rubble-pile’ asteroids (gravitationally bound aggregates of collisional debris) are common in the Solar System, and that self-gravitation may equal or exceed material cohesion for planetary bodies as small as several hundred metres. Because analytical scaling relations for impact cratering and disruption6,7,8 do not extend to this size regime, where gravity and material strength are both important, detailed simulations are needed to predict how small asteroids evolve through impact, and also to ascertain whether powerful explosions offer a viable defence against bodies headed for a collision with Earth. Here we present simulations, using a smooth-particle hydrodynamics code9, of energetic impacts into small planetary bodies with internal structure ranging from solid rock to porous aggregate. We find that the outcome of a collision is very sensitive to the configuration of pre-existing fractures and voids in the target. A porous asteroid (or one with deep regolith) damps the propagation of the shock wave from the impactor, sheltering the most distant regions, while greatly enhancing the local deposition of energy. Multiple-component asteroids (such as contact binaries) are also protected, because the shock wave cannot traverse the discontinuity between the components. We conclude that the first impact to significantly fragment an asteroid may determine its subsequent collisional evolution, and that internal structure will greatly influence attempts to disrupt or deflect an asteroid or comet headed towards Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: An initially intact Castalia (1.6 km longest dimension) seen 0.3 s after impact by an 8-m-radius basalt sphere at 5 km s−1.
Figure 2: A contact-binary Castalia 0.3 s after impact by an 8-m-radius basalt sphere striking at 5 km s−1 on one end.
Figure 3: A 50% porous Castalia 0.3 s after impact by an 8-m-radius sphere at 5 km s−1.
Figure 4: Effect of target porosity.
Figure 5: Effect of projectile size and speed.

References

  1. 1

    Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164 (1993).

    ADS  Article  Google Scholar 

  2. 2

    Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184 (1996).

    ADS  Article  Google Scholar 

  3. 3

    Nolan, M. C., Asphaug, E., Melosh, H. J. & Greenberg, R. Impact craters on asteroids: Does strength or gravity control their size? Icarus 124, 359–371 (1996).

    ADS  Article  Google Scholar 

  4. 4

    Love, S. J. & Ahrens, T. J. Catastrophic impacts on gravity dominated asteroids. Icarus 124, 141–155 (1996).

    ADS  Article  Google Scholar 

  5. 5

    Melosh, H. J. & Ryan, E. V. Asteroids: Shattered but not dispersed. Icarus 129, 562–564 (1997).

    ADS  Article  Google Scholar 

  6. 6

    Housen, K. R., Schmidt, R. M. & Holsapple, K. A. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. J. Geophys. Res. 88, 2485–2499 (1983).

    ADS  Article  Google Scholar 

  7. 7

    Holsapple, K. A. & Schmidt, R. M. Point source solutions and coupling parameters in cratering mechanics. J. Geophys. Res. 92, 6350–6376 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Housen, K. R. & Holsapple, K. A. On the fragmentation of asteroids and planetary satellites. Icarus 84, 226–253 (1990).

    ADS  Article  Google Scholar 

  9. 9

    Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184 (1996).

    ADS  Article  Google Scholar 

  11. 11

    Hudson, R. S. & Ostro, S. J. Shape of asteroid 4769 Castalia (1989 PB) from inversion of radar images. Science 263, 940–943 (1994).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ostro, S. J. et al. Asteroid radar astrometry. Astron. J. 102, 1490–1502 (1991).

    ADS  Article  Google Scholar 

  13. 13

    Ahrens, T. J. & O'Keefe, J. D. in Impact and Explosion Cratering(eds Roddy, D. J., Pepin, R. O. & Merrill, R. B.) 639–656 (Pergamon, New York, 1977).

    Google Scholar 

  14. 14

    Tillotson, J. H. Metallic equations of state for hypervelocity impact. (General Atomic Report GA-3216, San Diego, 1962).

  15. 15

    Nakamura, A. & Fujiwara, A. Velocity distribution of fragments formed in a simulated collisional disruption. Icarus 92, 132–146 (1991).

    ADS  Article  Google Scholar 

  16. 16

    Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Velocity distributions among colliding asteroids. Icarus 107, 255–268 (1994).

    ADS  Article  Google Scholar 

  18. 18

    Belton, M. J. S. et al. Galileo encounter with 951 Gaspra—First pictures of an asteroid. Science 257, 1647–1652 (1992).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Belton, M. J. S. et al. Galileo's encounter with 243 Ida: An overview of the imaging experiment. Icarus 120, 1–19 (1996).

    ADS  Article  Google Scholar 

  20. 20

    Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164 (1993).

    ADS  Article  Google Scholar 

  21. 21

    Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184 (1996).

    ADS  Article  Google Scholar 

  22. 22

    Housen, K. R., Schmidt, R. M. & Holsapple, K. A. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. J. Geophys. Res. 88, 2485–2499 (1983).

    ADS  Article  Google Scholar 

  23. 23

    Veverka, J. et al. NEAR's flyby of 253 Mathilde: Images of a C asteroid. Science 278, 2109–2112 (1997).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Asphaug, E. et al. Impact evolution of icy regoliths. Lunar Planet. Sci. Conf. (Abstr.) XXVIII, 63–64 (1997).

    ADS  Google Scholar 

  25. 25

    Love, S. G., Hörz, F. & Brownlee, D. E. Target porosity effects in impact cratering and collisional disruption. Icarus 105, 216–224 (1993).

    ADS  Article  Google Scholar 

  26. 26

    Fujiwara, A., Cerroni, P., Davis, D. R., Ryan, E. V. & DiMartino, M. in Asteroids II(eds Binzel, R. P., Gehrels, T. & Matthews, A. S.) 240–265 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  27. 27

    Davis, D. R. & Farinella, P. Collisional evolution of Edgeworth-Kuiper Belt objects. Icarus 125, 50–60 (1997).

    ADS  Article  Google Scholar 

  28. 28

    Ahrens, T. J. & Harris, A. W. Deflection and fragmentation of near-Earth asteroids. Nature 360, 429–433 (1992).

    ADS  Article  Google Scholar 

  29. 29

    Resources of Near-Earth Space(eds Lewis, J. S., Matthews, M. S. & Guerrieri, M. L.) (Univ. Arizona Press, Tucson, 1993).

Download references

Acknowledgements

This work was supported by NASA's Planetary Geology and Geophysics Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Asphaug.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asphaug, E., Ostro, S., Hudson, R. et al. Disruption of kilometre-sized asteroids by energetic collisions. Nature 393, 437–440 (1998). https://doi.org/10.1038/30911

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.