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Back to basics on quantum theory 
Fashion seems to have comejull circle as physicists look to the 1920sjor inspiration. But 
what has prompted the change? 
WHY is there, just now, so much interest in 
the foundations of quantum mechanics? 
The simplest explanation would be that the 
grand old men of quantum mechanics -
the young men of the mid-1920s - are all 
now dead, so that the field is clear for a re
examination of the subject by a succeeding 
generation. But this is not the case. P .A.M. 
Dirac, who ranks with the late Wolfgang 
Pauli as one of those who made quantum 
mechanics into a coherent whole in the 
second half of the 1920s, is fortunately still 
alive and active, commuting with the 
seasons between Cambridge (England) and 
Tallahassee (Florida). 

There are several candidate explan
ations, of which the most obvious is 
extrinsic to quantum mechanics as such: 
half a century after the ending of the most 
radical revision of the notion of physical 
reality that began with Planck (1901) and 
ended with the recognition that the matrix 
mechanics of Born, Heisenberg and 
Jordan (1925) and the wave mechanics of 
SchrOdinger (1926) were different ways of 
saying the same sort of things, people have 
come naturally to a reconsideration of 
what really occurred during that upheaval. 

The more probable explanation is prac
tical - people's need to tell a more 
sophisticated generation of students a 
coherent tale about a field of physics which 
is acknowledged to be the most searching 
account of what the physical world is like 
but which has been uncomfortably 
balkanized almost from the beginning, and 
which is now not one subject but half a 
dozen. At one extreme there is what passes 
as quantum mechanics among chemists. 
On the convenient assumption that the 
nuclei of atoms in a molecule are fixed at 
their mean positions (for which the Born
Oppenheimer approximation provides the 
justification), people have become 
extremely skilled at calculating electronic 
energy levels. Another sub-branch of wave 
mechanics is that in which similar tech
niques are carried over into the treatment 
of the properties of nuclei. At the other 
extreme is that other, more esoteric, 
pursuit generally labelled as the theory of 
quantum fields from which have sprung 
two great successes, the successful treat
ment of quantum electrodynamics and the 
unification of the fields of electrodynamics 
and the weak nuclear interaction, but 
which seems to be running into the ground 
in people's attempts to construct more 
comprehensive unified theories (under the 
label Grand Unified Theory). 

The obvious difficulty is that the 
straightforward and well-understood 
application of quantum mechanics to, say, 
the calculation of the behaviour of elec
trons in semiconductors cannot be pre
sented to students as the routine calculus 
that it has become while the same students 
must know what uncertainties beset other 
parts of the subject. 

One of the new generation of students, 
Joseph Godfrey from the University of 
Notre Dame, has now provided an inter
esting and stimulating pointer to the reso
lution of some of these questions (Phys. 
Rev. Lett. 52, 1365; 1984). Godfrey's con
tribution is refreshing not merely because 
he thanks his fellow graduate students for 
"discussions and support" but also 
because his article is, in its way, an impor
tant historical pointer. For the starting
point is in the prehistory of quantum 
mechanics, the early (1927 and thereafter) 
contributions of Fritz London and 
Hermann Weyl to the argument about the 
meaning of the then new quantum theory. 
Godfrey's objective is to derive Dirac's 
commutator, the assumption that the oper
ators representing conjugate dynamical 
variables in quantum theory anti-commute 
with each other in the sense that their order 
cannot be inverted without affecting the 
result, from London's paper on the subject 
(Z. Phys. 42, 375; 1927). 

Godfrey remarks that it is 
"unfortunate" that the importance of 
London's paper has been ignored all these 
years. That, no doubt, is true but is also 
understandable. London in 1927 was 
attempting something that must already 
have seemed old-fashioned to many of his 
contemporaries - to account for Bohr's 
part-classical quantization rules from 
dynamical principles. Eventually, 
London's work allowed him to contribute 
significantly to the understanding of super
conductivity, but even in the 1920s it stimu
lated Weyl to generalize his earlier account 
of the projective geometry of the electro
magnetic field to a consideration of vector 
fields in general and to a statement of the 
importance of gauge theory (as when, in 
electromagnetism, it is possible to multiply 
any solution for the vector potential of a 
field by complex factors without affecting 
the physically-observable forces). 

Godfrey begins with Weyl's statement of 
what happens when a field vector is consis
tently displaced around a small circuit in 
relativistic space. Ordinarily, the result is to 
demonstrate both that Maxwell's 

equations are natural and, in non-Rieman
nian geometry such as that of general rela
tivity, to obtain the link between electro
magnetism and general relativity in which 
both matter and electromagnetism 
contribute to Einstein's energy-mo
mentum tensor. Godfrey's innovation is to 
generalize Weyl' s form, the simplest, of the 
non-Riemannian part of the result of the 
displacement of a vector around a small 
circuit in such a way as to mix together the 
position of a particle and the vector-poten
tial which it experiences. This procedure is, 
to say the least, interesting; Godfrey points 
out that it is tantamount to assuming tha~ 
the geometrical properties of space are 
determined in part by the character of the 
particle being used to probe that space, 
"but this is what is required to derive the 
Dirac commutator from the formalism". 

The latest in what seems to be a spate of 
broodings about the fundamentals of 
quantum mechanics is a derivation of an 
axiom of Dirac's from Weyl's projective 
geometry. 

The argument (unlike London's) has the 
virtue of treating the position and momen
tum of a particle on an equal footing. The 
notion that the operators by which they are 
represented should anti-commute in the 
sense that the difference of their products 
in one order and the other should be the 
imaginary number ifI (where i is the square 
root of -1 and If is Planck's constant 
divided by 2n) tumbles out. So too, 
Godfrey argues, does the exclusion 
principle. But by translating Weyl's 
geometric arguments to phase space, in 
which the position and momentum of a 
particle are treated similarly, Godfrey 
arrives at equations of motion for an 
electron even in special relativity which 
suggest ways in which the classical problem 
of the superficially infinite self-mass of a 
charged particle may be circumvented, as 
may be the corresponding renormalization 
procedures of Feymann and Schwinger in 
the case of quantum electrodynamics. 

Godfrey's article is at this stage 
admittedly a sketch of a manuscript yet to 
be written (which is another of its 
refreshing qualities). His programme is 
ambitious, even for one still a graduate 
student. But if there turns out to be a cast
iron way of inferring the whole of quantum 
mechanics from some simple geometrical 
statements along the lines outlined by Weyl 
half a century ago, the consequences 
should be an end to the balkanization 
ofthesubject. John Maddox 


	Back to basics on quantum theory

