A new surface electron-emission mechanism in diamond cathodes

Abstract

An electron-emission mechanism for cold cathodes is described based on the enhancement of electric fields at metal–diamond–vacuum triple junctions. Unlike conventional mechanisms, in which electrons tunnel from a metal or semiconductor directly into vacuum, the electrons here tunnel from a metal into diamond surface states, where they are accelerated to energies sufficient to be ejected into vacuum. Diamond cathodes designed to optimize this mechanism exhibit some of the lowest operational voltages achieved so far.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Diagrams and plots of potential electron energy versus distance for three electric field emission mechanisms.
Figure 2: Plot of emitted and electrode currents as a function of voltage across the diamond for the structure shown in the inset.
Figure 3: Emission current with and without 10 mW cm−2 of incandescent illumination from a fibre lamp.
Figure 4: Potential energy curves as a function of distance from the liquid 4 He and the diamond surfaces.
Figure 5: Emission and gate currents as a function of gate voltage for a surface emission device with a step height of 1.5 µm (inset).

References

  1. 1

    Kumar, N. Diamond Films '94 (abstr.) 5th Eur Conf. on Diamond, Diamond-like and Related Materials (Tuscany, Italy, September 25–30, 1994).

  2. 2

    Geis, M. W., Twichell, J. C. & Lyszczarz, T. M. Fabrication and theory of diamond emitters. Lincoln Lab. J. 8, 161–171 (1995).

    Google Scholar 

  3. 3

    Geis, M. W., Twichell, J. C. & Lyszczarz, T. M. Diamond emitters fabrication and theory. J. Vac. Technol. B 14, 2060–2067 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Kumar, N. Diamond cold cathode technology for FED manufacturing (abstr.), DARPA High Definition Systems Information Exchange Conf. (Arlington, Virginia, March 23–26, 1997).

  5. 5

    Geis, M. W. Efremow, N. N., Krohn, K. E., Twichell, J. C. & Lyszczarz, T. M. Diamond surface emission cathodes (abstr.), DARPA High Definition Systems Information Exchange Conf. (Arlington, Virginia, March 23–26, 1997).

  6. 6

    Dyke, W. D. & Dolan, W. Field emission. Adv. Electron. Electron Phys. 8, 89–185 (1956).

    CAS  Article  Google Scholar 

  7. 7

    De Trourreil, C. H. & Srivastava, K. D. Mechanism of surface charge of high-voltage insulators in vacuum. IEEE Trans. Electr. Insul. EI-8, 17–21 (1973).

    Article  Google Scholar 

  8. 8

    Latham, R. V. (ed.) in High Voltage Insulation: The Physical Basis 229–240 (Academic, New York, 1981).

    Google Scholar 

  9. 9

    Cole, W. Properties of image-potential-induced surface states of insulators. Phys. Rev. B 2, 4239–4252 (1970).

    ADS  Article  Google Scholar 

  10. 10

    Grimes, C. C. Electron in surface states on liquid helium. Surf. Sci. 73, 379–395 (1978).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Spindt, C. A., Brodie, I., Humphrey, L. & Westerberg, E. R. Physical properties of thin-film field emission cathodes with molybdenum cones. J. Appl. Phys. 47, 5248–5263 (1976).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Bozler, C. O. et al. Arrays of gated field emitter cones having 0.32 µm tip-to-tip spacing. J. Vac. Sci. Technol. B 12, 629–631 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Collins, A. T. & Lightowlers, E. C. in Properties of Diamond(ed. Field, J. E.) 79–106 (Academic, New York, 1979).

    Google Scholar 

  14. 14

    Myers, A. F. et al. Characterization of amorphous carbon coated silicon field emitters. J. Vac. Sci. Technol. B 14, 2024–2029 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Givargizov, E. I., Zhirnov, V. V., Kuznetsov, A. V. & Plekhanov, P. S. Cold emission from the single-crystalline microparticle of diamond on a Si tip. J. Vac. Sci. Technol. B 14, 2030–2033 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Lerner, P., Cutler, P. H. & Miskovsky, N. M. Theoretical analysis of field emission from a metal diamond cold cathode emitter. J. Vac. Sci. Technol. B 15, 337–342 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Geis, M. W., Efremow, N. N., Krohn, K. E., Twichell, J. C. & Lyszczarz, T. M. Theory and experimental results of a new diamond surface-emission cathode. Lincoln Lab. J. 10, 3–18 (1997).

    Google Scholar 

  18. 18

    Okano, K., Koizumi, S., Silva, S. R. P. & Amaratunga, G. A. J. Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature 381, 140–141 (1996).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Prawer, S., Uzan-Spaguy, C., Braunstein, G. & Kalish, R. Can n-type doping of diamond be achieved by Li or Na ion implantation? Appl. Phys. Lett. 63, 2502–2504 (1993).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Prawer, S. & Kalish, R. Ion-beam-induced transformation of diamond. Phys. Rev. B 51, 15711–15722 (1995).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Geis, M. W., Twichell, J. C., Macaulay, J. & Okano, K. Electron field emission from diamond and other carbon materials after H2, O2and Cs treatment. Appl. Phys. Lett. 67, 1328–1330 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Yater, J. E., Shih, A. & Abrams, R. Electron transport and emission properties of C(100). Phys. Rev. B 56, R4410–R4413 (1997).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Geis, M. W., Twichell, J. C., Efremow, N. N., Krohn, K. & Lyszczarz, T. M. Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron-doped diamond. Appl. Phys. Lett. 68, 2294–2296 (1996).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Pate, B. B. et al. The diamond (111) surface: A dilemma resolved. Phys. B 117/118, 183–785 (1983).

    Google Scholar 

  25. 25

    Geis, M. W., Gregory, J. A. & Pate, B. B. Capacitance-voltage measurements on metal-SiO2-diamond structures fabrication with (100)- and (111)-oriented substrates. IEEE Trans. Electron Dev. 38, 619–626 (1991).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Davison, S. G. & Ste'slicka, M. Basic Theory of Surface States(Clarendon, Oxford, 1992).

    Google Scholar 

  27. 27

    Osgood, R. M. & Wang, X. in Solid State PhysicsVol. 51, 1–80 (Academic, New York, 1998).

    Google Scholar 

  28. 28

    McRae, E. G. Electronic surface resonances of crystals. Rev. Mod. Phys. 51, 541–568 (1979).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Grimes, C. C. & Brown, T. R. Direct spectroscopic observation of electrons in image-potential states outside liquid helium. Phys. Rev. Lett. 32, 280–283 (1974).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Efremow, N. N., Geis, M. W., Flanders, D. C., Lincoln, G. A. & Economou, N. P. Ion beam assisted etching of diamond. J. Vac. Technol. B 3, 416–418 (1985).

    CAS  Article  Google Scholar 

  31. 31

    Dittmer, G. Electrical conduction and electron emission of discontinuous thin films. Thin Solid Films 9, 317–328 (1972).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Borziak, P. G., Kulyupin, Y. A., Nepijko, S. A. & Shamonya, V. G. Electrical conductivity and electrical emission from discontinuous metal films of homogeneous structure. Thin Solid Films 76, 359–378 (1981).

    ADS  Article  Google Scholar 

  33. 33

    Araki, H. & Hanawa, T. The temperature dependence of electron emission from a discontinuous carbon film device between silver film electrodes. Thin Solid Films 158, 207–216 (1988).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Hartwell, M. & Fonstad, C. G. Strong electron emission from patterned tin–indium oxide thin films. International Electron Devices Meeting 519–521 (1975).

  35. 35

    Yamaguchi, E. et al. Society for Information Display International Symposium Digest of Technical Papers 28, 52–55 (1997).

    Google Scholar 

  36. 36

    Borziak, P., Kulyupin, Y. & Tomchuk, P. Electron processes in discontinuous metal films. Thin Solid Films 30, 47–53 (1975).

    ADS  Article  Google Scholar 

  37. 37

    37. Kulyupin, Y. A. & Nepiiko, S. A. Effect of substrate deformation on electron emission from dispersed metal films. Sov. Phys. Solid State 17, 1882–1884 (1976).

    Google Scholar 

  38. 38

    38. Blessing, R. & Pagnia, H. Electron emission from gold island films. Phys. Status Solid B 111, 537–542 (1982).

    ADS  Article  Google Scholar 

  39. 39

    39. Asai, A. et al. Society for Information Display International Symposium Digest of Technical Papers 28, 127–130 (1997).

    Google Scholar 

  40. 40

    40. Mearini, G. T. et al. Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides. Appl. Phys. Lett. 66, 242–244 (1995).

    ADS  CAS  Article  Google Scholar 

  41. 41

    41. Wang, C., Garcia, A., Ingram, D. C., Lake, M. & Kordesch, M. E. Cold field emission from CVD diamond film observed in emission electron microscopy. Electron. Lett. 27, 1459–1460 (1991).

    ADS  CAS  Article  Google Scholar 

  42. 42

    42. Lapiano-Smith, D. A., Eklund, E. A., Himpsel, F. J. & Teminello, L. J. Epitaxy of LiF on Ge(100). Appl. Phys. Lett. 50, 2174–2176 (1991).

    ADS  Article  Google Scholar 

  43. 43

    43. Benjamin, M. C., Wang, C., Davis, R. F. & Nemanich, R. J. Observation of negative electron affinity heteroepitaxial AlN on a(6H)-SiC(0001). Appl. Phys. Lett. 64, 3288–3290 (1994).

    ADS  CAS  Article  Google Scholar 

  44. 44

    44. Quiniou, B., Schwarz, W., Wu, Z., Osgood, R. M. & Yamg, Q. Photoemission from thick overlying epitaxial layers of CaF2on Si(111). Appl. Phys. Lett. 60, 183–185 (1992).

    ADS  CAS  Article  Google Scholar 

  45. 45

    45. Powers, M. J. et al. Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 67, 3912–3914 (1995).

    ADS  CAS  Article  Google Scholar 

  46. 46

    46. Dye, J. L. Electrides: Ionic salts with electrons as the anions. Science 18, 272–273 (1990).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Walters for suggesting the possibility of surface states on NEA semiconductors, R. Parker for suggesting the triple-junction mechanism for electron injection, H. Gray and J. Cuomo for discussion, and D. Lennon for technical assistance. This work was supported by the Ballistic Missile Defence Office through the Office of Naval Research and the Defense Advanced Research Projects Agency. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. W. Geis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geis, M., Efremow, N., Krohn, K. et al. A new surface electron-emission mechanism in diamond cathodes. Nature 393, 431–435 (1998). https://doi.org/10.1038/30900

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.