Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Double-stranded cleavage by cell extracts near recombinational signal sequences of immunoglobulin genes

Abstract

The genes encoding the variable regions of murine immunoglobulin light chains are present in the germ line in two separate segments, V and J. During B lymphocyte differentiation these segments are brought together to form a single unit (for review see ref. 1). Although much is known about the structures of V and J segments, both in germ-line configuration and after rearrangement2–5, essentially nothing is known about the biochemical mechanism of VJ recombination. One possible step in proposed mechanisms of immunoglobulin gene rearrangement is endonucleolytic cleavage of the participating DNA segments before joining6. In an attempt to detect such an activity, we have developed an assay for the detection of site-specific double- or single-strand endonucleolytic activity in crude soluble extracts. Using this assay we have detected an activity in extracts of nuclei from mouse B-lymphoid lines and from mouse L cells that is capable of introducing duplex breaks near the recombinational signal sequences of immunoglobulin Jκ segments. We report the activity here because of its intrinsic interest although we lack any direct evidence that it has a role in VJ recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Seidman, J. G. & Leder, P. Nature 276, 790–795 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Lenhard-Schuller, R., Hohn, B., Brach, C., Hirama, M. & Tonegawa, S. Proc. natn. Acad. Sci. U.S.A. 75, 4709–4713 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Nature 280, 288–294 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Seidman, J. G., Max, E. E. & Leder, P. Nature 280, 370–375 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Alt, F. W. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 79, 4118–4122 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Heinrich, G., Traunecker, A. & Tonegawa, S. J. exp. Med. (in the press)

  8. Max, E. E., Seidman, J. G. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 76, 3450–3454 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Rosenberg, N. & Baltimore, D. J. exp. Med. 143, 1453–1463 (1976).

    Article  CAS  Google Scholar 

  10. Lewis, S., Rosenberg, N., Alt, F. & Baltimore, D. Cell 30, 807–816 (1982).

    Article  CAS  Google Scholar 

  11. Challberg, M. D. & Kelly, T. J. Jr Proc. natn. Acad. Sci. U.S.A. 76, 655–659 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Steinmetz, M., Altenburger, W. & Zachau, H. G. Nucleic Acids Res. 8, 1709–1720 (1980).

    Article  CAS  Google Scholar 

  13. Hochtl, J., Muller, C. R. & Zachau, H. G. Proc. natn. Acad. Sci. U.S.A. 79, 1383–1387 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Lewis, S., Gifford, A. & Baltimore, D. Nature 308, 425–428 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Leder, P. et al. Cold Spring Harb. Symp. quant. Biol. 45, 859–865 (1981).

    Article  CAS  Google Scholar 

  16. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. Nature 283, 593–596 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desiderio, S., Baltimore, D. Double-stranded cleavage by cell extracts near recombinational signal sequences of immunoglobulin genes. Nature 308, 860–862 (1984). https://doi.org/10.1038/308860a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308860a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing