Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

Abstract

The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Nordstrom, D. K. in Acid Sulfate Weathering, 37–56 (Soil Science Society of America, Madison, 1982).

    Google Scholar 

  2. 2

    Garrels, R. M. & Thompson, M. E. Am. J. Sci. 258, 57–67 (1960).

    Article  Google Scholar 

  3. 3

    Singer, P. C. & Stumm, W., Second Symp. Coal Mine Drainage Res., 12–34 (Mellon Inst., Pittsburgh, 1968).

    Google Scholar 

  4. 4

    Singer, P. C. & Stumm, W. Science 167, 1121–1123 (1970).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ehrlich, H. L. Geomicrobiology, (Dekker, New York, 1981).

  6. 6

    Lacy, D. T. & Lawson, F. Biotech. Bioengng. 12, 29–50 (1970).

    Article  Google Scholar 

  7. 7

    Nordstrom, D. K. thesis, Stanford Univ., Calif. (1977).

  8. 8

    Tuovinen, O. H. & Kelly, D. P. Z. allg. Mikrobiol. 12, 311–346 (1972).

    CAS  Article  Google Scholar 

  9. 9

    Bennett, J. C. & Tributsch, H. J. Bact. 134, 310–317 (1978).

    CAS  PubMed  Google Scholar 

  10. 10

    Kroopnick, P. & Craig, H. Science 175, 54–55 (1972).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hoering, T. C. & Kennedy, J. W. J. Am. chem. Soc. 79, 56–60 (1967).

    Article  Google Scholar 

  12. 12

    Lloyd, R. M. J. geophys. Res. 73, 6099–6110 (1968).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Nehring, N. L., Bowen, P. A. & Truesdell, A. H. Geothermics 5, 63–66 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Friedman, I. & O'Neil, J. R. U.S. Geol. Survey Prof. Pap. 440-KK (1977).

  15. 15

    Coleman, M. L. & Moore, M. P. Analyt. Chem. 50, 1594–1595 (1978).

    CAS  Article  Google Scholar 

  16. 16

    Kaplan, I. R. & Rittenburg, S. C. J. gen. Microbiol. 34, 195–212 (1964).

    CAS  Article  Google Scholar 

  17. 17

    Kaplan, I. R. & Rafter, T. A. Science 127, 517–518 (1958).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Nakai, N. & Jensen, M. L. Geochim. cosmochim. Acta 28, 1893–1912 (1964).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Field, C. W. Econ. Geol. 61, 1428–1435 (1966).

    CAS  Article  Google Scholar 

  20. 20

    Schoen, R. & Rye, R. O. Science 170, 1082–1084 (1970).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Goldhaber, M. B. Am. J. Sci. 283, 193–217 (1983).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Schwarcz, H. P. & Cortecci, G., Chem. Geol. 13, 285k–294k (1974).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, B., Wheeler, M. & Nordstrom, D. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation. Nature 308, 538–541 (1984). https://doi.org/10.1038/308538a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing