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Three dimensions for two 
Cellular automata make it possible to produce some special solutions of the Ising-lattice problem 
in three dimensions. Will the hunt for general solutions now begin again? 

THE title "Exact results for two and three­
dimensional Ising and Potts models" will 
excite only a small community of physic­
ists, but for them it will be eye-catching in 
the highest degree. For is this not the solu­
tion to a problem on which a host of people 
have broken their heads in the past forty 
years? That, certainly, is how it seems -
but the title is a little misleading, almost like 
the headlines with which popular news­
papers try to capture readers when the flow 
of news is slack. And if the title, that of a 
paper by Eytan Domany from the Weiz­
mann Institute in Rehovot, Israel, but 
writing from Stanford University (Phys. 
Rev. Lett. 52, 871; 12 March 1984), had 
more properly read "Some exact 
results ... ", whoever would have been sit­
ting on the edge of his chair? 

But even if the text of Domany's paper is 
something of a letdown, it is an interesting 
and potentially important development in 
the solution of what is probably best 
known as the Onsager problem. The prob­
lem was first made interesting (in the sense 
of being made tractable) by Lars Onsager 
in the 1940s. The Ising lattice, so called 
since the 1920s, is the simplest model there 
could be of a ferromagnetic material as well 
as of many other kinds of systems capable 
of order-disorder transitions. 

The problem is to calculate the thermo­
dynamic properties of a lattice in which 
each vertex is occupied by a physical 
variable which can have one of only two 
values, say -1 and + 1, and suppose that 
only interactions between nearest neigh­
bours in the lattice are significant. The 
energy of interaction between two 
neighbouring sites will depend only on the 
values assumed by the two sites. If the 
variables represent electron spins, the 
model may describe a ferromagnetic 
material. If they represent electric dipoles, 
the lattice will stand for a ferroelectric 
material (which is, of course, an ordinary 
dielectric above some critical temperature). 
If the physical variable represents one or 
other of two different kinds of atoms, the 
system likens that of binary alloys such as. 
(J -brass whose mechanical properties de­
pend critically on whether there is or is not 
long-range order in the system. 

Onsager's achievement was to demon­
strate that it is possible to obtain exact solu­
tions for the two-dimensional Ising lattice, 
at least with the help of seemingly un­
demanding assumptions such as that the 
properties of a finite piece of lattice are 
those of an infinite lattice in which the 

finite piece repeats itself periodically. The 
importance of Onsager's innovation, 
essentially a neat piece of algebra, was that 
it was the first exact calculation of the 
thermodynamic properties of a system in 
which phase transitions might be expected. 
Earlier treatments of the thermodynamics 
of phase transitions, that of Landau for ex­
ample, entailed expansions of the free 
energy of each of two phases in terms of 
some small quantity (say the difference be 
tween temperature and transition tem­
perature) and were thus unable to describe 
the behaviour of thermodynamic quan­
tities arbitrarily close to the transition. 

So, forty years ago, it seemed natural to 
suppose that the problem of phase tran­
sitions had been solved once and for all. 
Onsager's original solution was for a two­
dimensional square lattice. He and G. H. 
Wannier soon afterwards provided a solu­
tion for a triangular lattice and, interesting­
ly, showed that that was the equivalent to 
the solution for a hexagonal lattice obtain­
ed by drawing a line perpendicular to each 
triangular side through its mid-point. (The 
thermodynamic properties of the 
"inverse" lattice are those of the original 
provided that the temperature is inverted 
by the critical temperature.) 

In reality, experience has been frustrat­
ing. A variety of two-dimensional lattices 
have been solved by variants of Onsager's 
technique or by other means. The model 
has been generalized in a variety of ways -
the Potts model is, for example, the 
generalization in which each vertex of a lat­
tice is occupied by some analogue of spin 
that can assume more than two values. The 
Ising lattice has also, quite unexpectedly, 
been the starting point for A. H. Wilson's 
demonstration that the renormalization of 
a gauge field theory can be represented by 
the calculations of the properties of a 
suitably chosen lattice. But the three­
dimensional Ising lattice has never been ex­
actly solved by Onsager's method or any 
other. People have had to be satisfied with 
numerical calculations (which nevertheless 
show that, for example, phase transitions 
on a three-dimensional lattice do involve a 
finite change of heat content, as observed 
when cooling iron through its Curie 
temperature). It has even been suggested 
that the three-dimensional problem is in­
herently insoluble. 

That it should be difficult is easily 
appreciated. To calculate the thermo­
dynamic properties of even a model 
system, it is necessary to enumerate all 

possible particular values of the energy. 
The next step is to construct the partition 
functions for the system, the sum over all 
possible energy states Ej of the quantity 
N j exp (E/ k7) where kis Boltzmann's con­
stant, T the temperature and N j is the 
number of configurations with energy Ej • 

The thermodynamic quantities are then 
simply derived - the entropy, for exam­
ple, is simply proportional to the logarithm 
of the partition function. The snag is that 
evaluating the quantities N j is an awkward 
combinatorial calculation. Onsager's two­
dimensional trick was to make the partition 
function factorize . 

So how can Domany have made progress 
even with some particular examples of a 
three-dimensional lattice? His trick is to 
combine the known solution of a two­
dimensional hexagonal lattice with another 
combinatorial kind of calculation, the 
technique of cellular automata popularized 
(after J. von Neumann) by Stephen 
Wolfram (see Nature 305,469; 1983). That 
is a means by which the evolution in 
"time" of an array of objects may be simu­
lated by machine once rules have been 
specified for the dependence of the 
members of one "generation" on those of 
the predecessor generation. 

The advantage of starting with a hex­
agonal Ising lattice is that when the inter­
actions between neighbours are such that 
the whole system is ferromagnetic, the lat­
tice can be considered as if it were two in­
terpenetrating triangular lattices inverted 
with respect to each other. The rules for the 
time evolution of such a system considered 
as a cellular automaton make it possible to 
regard each successive "generation" in the 
calculation as another layer of a three­
dimensional lattice. But the outcome is, as 
followers of Wolfram might expect, not a 
three-dimensional lattice of identical 
planes but one in which hexagonal and 
triangular arrays alternate as the structure 
known as hexagonal close-packed. 

The same trick works with the Potts 
model - starting with a hexagonal lattice 
in two dimensions, Domany is able to 
generate a solution for a hexagonal close­
packed lattice in three dimensions. For the 
time being, the interest of much of this 
argument is that it should be possible to 
ground at least some of the conjectures 
based on numerical calculations in 
analytical results. But nobody should be 
surprised if the old Adam - the hunt for a 
general three-dimensional solution - does 
not begin all over again. John Maddox 
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