Reciprocal food sharing in the vampire bat


Behavioural reciprocity can be evolutionarily stable1–3. Initial increase in frequency depends, however, on reciprocal altruists interacting predominantly with other reciprocal altruists either by associating within kin groups or by having sufficient memory to recognize and not aid nonreciprocators. Theory thus suggests that reciprocity should evolve more easily among animals which live in kin groups. Data are available separating reciprocity from nepotism only for unrelated nonhuman animals4. Here, I show that food sharing by regurgitation of blood among wild vampire bats (Desmodus rotundus) depends equally and independently on degree of relatedness and an index of opportunity for recipro cation. That reciprocity operates within groups containing both kin and nonkin is supported further with data on the availability of blood-sharing occasions, estimates of the economics of shar ing blood, and experiments which show that unrelated bats will reciprocally exchange blood in captivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Axelrod, R. & Hamilton, W. D. Science 211, 1390–1396 (1981).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2

    Boorman, S. A. & Levitt, P. R. The Genetics of Altruism (Academic, New York, 1980).

    Google Scholar 

  3. 3

    Brown, J. S., Sanderson, M. J. & Michod, R. E. J. theor. Biol. 99, 319–339 (1982).

    Article  Google Scholar 

  4. 4

    Packer, C. Nature 265, 441–443 (1977).

    ADS  Article  Google Scholar 

  5. 5

    Wright, S. Evolution and the Genetics of Populations Vol. 1 (University of Chicago Press, 1968).

    Google Scholar 

  6. 6

    Altmann, J. Behaviour 49, 227–267 (1974).

    CAS  Article  Google Scholar 

  7. 7

    Fager, E. W. Ecology 38, 586–595 (1957).

    Article  Google Scholar 

  8. 8

    McFadden, D. Frontiers in Econometrics (ed. Zarembka, P.) 105–142 (Academic, New York, 1974).

    Google Scholar 

  9. 9

    Truett, J., Cornfield, J. & Kannel, W. J. chronic Dis. 20, 511–524 (1967).

    CAS  Article  Google Scholar 

  10. 10

    Lord, R. D., Muradali, F. & Lazaro, L. J. Mammal. 57, 573–575 (1976).

    Article  Google Scholar 

  11. 11

    McNab, B. K. J. Mammal. 54, 131–144 (1973).

    Article  Google Scholar 

  12. 12

    McFarland, W. N. & Wimsatt, W. A. Comp. Biochem. Physiol. A28, 985–1006 (1969).

    Article  Google Scholar 

  13. 13

    Morton, D. & Richards, J. F. Comp. Biochem. Physiol. A69, 511–515 (1981).

    Article  Google Scholar 

  14. 14

    Ligon, J. D. Am. Nat. 121, 366–384 (1983).

    Article  Google Scholar 

  15. 15

    Connor, R. C. & Norris, K. S. Am. Nat. 119, 358–374 (1982).

    Article  Google Scholar 

  16. 16

    Jarvis, J. U. M. Bull. Carnegie Mus. nat. Hist. 6, 81–87 (1978).

    Google Scholar 

  17. 17

    Teleki, G. The Predatory Behavior of Wild Chimpanzees (Bucknell University Press, Lewisburg, 1973).

    Google Scholar 

  18. 18

    MacDonald, D. W. & Moehlman, P. D. Perspectives in Ethology Vol. 5 (eds Bateson, P. P. G. & Klopfer, P. H.) 433–467 (Plenum, New York, 1982).

    Google Scholar 

  19. 19

    Malcolm, J. R. & Marten, K. Behavl Ecol. Sociobiol. 10, 1–13 (1982).

    Article  Google Scholar 

  20. 20

    Engelman, L. BMDP Statistical Software (eds Dixon, M. B. et al.) 330–344 (University of California Press, Berkeley, 1981).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilkinson, G. Reciprocal food sharing in the vampire bat. Nature 308, 181–184 (1984).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.