Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Boron cosmochemistry interpreted from abundances in mantle xenoliths

Abstract

Recent technical advances have made it possible to measure the abundance of boron in ultramafic xenoliths from alkali basalts thought to be representative of the upper mantle. Such data can provide information on the cosmochemistry of boron, particularly the temperature and mode of condensation of this element from the solar nebula. Analysis of xenoliths, selected by Jagoutz et al.1 to represent fertile unaltered mantle, shows that the mean boron abundance is more than three times that expected for the condensation temperature of 700 K calculated by Cameron et al.2. Our measurements, reported here, suggest that boron condensed at approximately 1,200 K as a solid solution in alkali feldspar or anorthite and not as an independent phase.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Jagoutz, E. et al. Proc. Lunar planet. Sci. Conf. 10, 2031–2050 (1979).

    ADS  Google Scholar 

  2. 2

    Cameron, A. G. W., Colgate, S. A. & Grossman, L. Nature 243, 204–207 (1973).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Higgins, M. D. et al. Proc. Int. Symp. on Use and Development of Low and Medium Flux Research Reactors (Massachusetts Institute of Technology, in the press).

  4. 4

    Gladney, E. S., Jurney, E. T. & Curtis, D. B. Analyt. Chem. 48, 2139–2142 (1976).

    CAS  Article  Google Scholar 

  5. 5

    Bergeron, M., Buffet, G., Higgins, M. D. & Shaw, D. M. Geol. Ass. Canada Progm 8, A6 (1983).

    Google Scholar 

  6. 6

    Higgins, M. D. & Shaw, D. M. Geol. Ass. Canada Progm 8, A32 (1983).

    Google Scholar 

  7. 7

    Curtis, D., Gladney, E. & Jurney, E. Geochim. cosmochim. Acta 44, 1945–1953 (1980).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2263–2380 (1982).

    Article  Google Scholar 

  9. 9

    Kohl, J. L., Parkinson, W. H. & Withbroe, G. L. Astrophys. J. Lett. 212, L101–L104 (1977).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Wai, C. M. & Wasson, J. T. Earth planet Sci. Lett. 36, 1–13 (1977).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Grossman, L. & Larimer, J. W. Rev. Geophys. Space Phys. 12, 71–102 (1974).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Smith, J. V. Feldspar Mineralogy Vol. 2 (Springer, Berlin, 1974).

    Google Scholar 

  13. 13

    Failey, M. P. thesis, Univ. Maryland (1979).

  14. 14

    Higgins, M. D. Geostandards News (in the press).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Higgins, M., Shaw, D. Boron cosmochemistry interpreted from abundances in mantle xenoliths. Nature 308, 172–173 (1984). https://doi.org/10.1038/308172a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing