Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum

Abstract

The adult corpus striatum in mammals is divided into distinct histochemical compartments1. If the cat caudate nucleus is stained for acetylcholinesterase a number of macroscopically visible zones appear that have lower acetylcholinesterase activity than the surrounding tissue2. These patches, called ‘striosomes’1, correspond to regions of high [Met]-enkephalin-like immunoreactivity3 and dense opiate receptor binding4 and are related to the uneven distribution of striatal efferent neurones and cortical afferent terminations5,6. One of the highest concentrations of neurotensin-like immunoreactivity is in the striatum and the immunoreactive material co-elutes with synthetic neurotensin on gel chromatography7. Recently, we have found that neurotensin-like immunoreactivity in the cat caudate nucleus coincides with the striosomes8. We have now localized neurotensin receptors in the cat caudate nucleus by autoradiography9 and found low density in the neurotensin-rich striosomes and a high density in the neurotensin-poor surrounding tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graybiel, A. M. in Cytochemical Methods in Neuroanatomy (eds Chan-Palay, V. & Palay, S. L.) 45–67 (Raven Press, New York, 1982).

    Google Scholar 

  2. Graybiel, A. M. & Ragsdale, C. W. Proc. natn. Acad. Sci. U.S.A. 75, 5723–5726 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Graybiel, A. M., Ragsdale, C. W., Yoneoka, E. S. & Elde, R. P. Neuroscience 6, 377–397 (1981).

    Article  CAS  Google Scholar 

  4. Herkenham, M. & Pert, C. B. Nature 291, 415–418 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Graybiel, A. M., Ragsdale, C. W. & Moon Edley, S. Exp Brain Res. 34, 189–195 (1979).

    Article  CAS  Google Scholar 

  6. Ragsdale, C. W. & Graybiel, A. M. Brain Res. 208, 259–266 (1981).

    Article  Google Scholar 

  7. Goedert, M. & Emson, P. C. Brain Res. 272, 291–297 (1983).

    Article  CAS  Google Scholar 

  8. Goedert, M., Mantyh, P. W., Hunt, S. P. & Emson, P. C. Brain Res. 274, 176–179 (1983).

    Article  CAS  Google Scholar 

  9. Young, W. S. & Kuhar, M. J. Brain Res. 179, 255–270 (1979).

    Article  CAS  Google Scholar 

  10. Lewis, P. R. Bibl. anat. 2, 11–20 (1961).

    Google Scholar 

  11. Kitabgi, P. Ann. N.Y. Acad. Sci. 400, 37–55 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Wamsley, J. K., Zarbin, M. A., Young, W. S. & Kuhar, M. J. Neuroscience 7, 595–613 (1982).

    Article  CAS  Google Scholar 

  13. Pollard, H., Llorens, C., Schwartz, J. C., Gros, C. & Dray, F. Brain Res. 151, 392–398 (1978).

    Article  CAS  Google Scholar 

  14. Murrin, L. C., Coyle, J. T. & Kuhar, M. J. Life Sci. 27, 1175–1183 (1980).

    Article  CAS  Google Scholar 

  15. Goedert, M., Pittaway, K. & Emson, P. C. Brain Res. (in the press).

  16. Olson, L., Seiger, Å. & Fuxe, K. Brain Res. 44, 283–288 (1972).

    Article  CAS  Google Scholar 

  17. Alexander, R. W., Davis, J. N. & Lefkowitz, R. J. Nature 258, 437–440 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Palacios, J. M. & Kuhar, M. J. Science 208, 1378–1380 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Quirion, R. et al. Nature 303, 714–716 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Mantyh, P. W., Pinnock, R. D., Downes, C. P., Goedert, M. & Hunt, S. P. Soc. Neurosci. Abstr. 13, 1206 (1983).

    Google Scholar 

  21. Hunt, S. P. & Mantyh, P. W. Brain Res. (in the press).

  22. Goedert, M., Pittaway, K., Williams, B. & Emson, P. C. Brain Res. (in the press).

  23. Lowry, D. H. Rosebrough, N. H., Farr, A. L. & Randall, R. J. J. biol. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedert, M., Mantyh, P., Emson, P. et al. Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum. Nature 307, 543–546 (1984). https://doi.org/10.1038/307543a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307543a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing