Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?

Abstract

Membrane receptors and ion transport mechanisms probably have an important role in lymphocyte activation leading to T-lymphocyte proliferation in the immune response. Here we have applied a gigaohm-seal patch clamp technique1 to reveal the identity and properties of ion channels in human T lymphocytes. A voltage-dependent potassium channel bearing a resemblance to the delayed rectifier of nerve and muscle cells was found to be the predominant ion channel in these cells. In the whole cell recording conformation, the channels open with sigmoid kinetics during depolarizing voltage steps, reaching a maximum K+ conductance of 3–5 nS. The current subsequently becomes almost completely inactivated during a long-lasting depolarization. Currents through single K+ channels recorded in whole cell and outside-out patch recording conformations reveal a unitary channel conductance of about 16 pS in normal Ringer solution. Thus, the peak current corresponds to approximately 200–300 conducting K+ channels per cell. Phytohaemag-glutinin (PHA), at concentrations that produce mitogenesis, alters K+ channel gating within 1 min of addition to the bathing solution, causing channels to open more rapidly and at more negative membrane potentials. 3H-thymidine incorporation by T lymphocytes following PHA stimulation is inhibited by the ‘classical’ K+ channel blockers tetraethylammonium and 4-aminopyridine, and also by quinine, at doses found to block the K+ channel in voltage-clamped T lymphocytes, suggesting that K+ channels may play a part in mitogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  2. Aldrich, R. W., Getting, P. A. & Thompson, S. H. J. Physiol., Lond. 291, 507–530 (1979).

    Article  Google Scholar 

  3. Aldrich, R. W. Biophys. J. 36, 519–532 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Fukushima, Y. & Hagiwara, S. Proc. natn. Acad. Sci U.S.A. 80, 2240–2242 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Kostyuk, P. G., Krishtal, O. A. & Pidoplichko, V. I. Nature 257, 691–693 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Latorre, R. & Miller, C. J. Membrane Biol. 71, 11–30 (1983).

    Article  CAS  Google Scholar 

  7. Schwarz, W. & Passow, H. A. Rev. Physiol. 45, 359–374 (1983).

    Article  CAS  Google Scholar 

  8. Barrett, J. N., Magleby, K. L. & Pallotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  9. Wong, B. S., Lecar, H. & Adler, M. Biophys. J. 39, 313–317 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Methfessel, C. & Boheim, G. Biophys. Struct. Mech. 9, 35–60 (1982).

    Article  CAS  Google Scholar 

  11. Lux, H. D., Neher, E. & Marty, A. Pflügers Arch. ges. Physiol. 389, 293–295 (1981).

    Article  CAS  Google Scholar 

  12. Hermann, A. & Hartung, K. Pflügers Arch. ges. Physiol. 393, 254–261 (1982).

    Article  CAS  Google Scholar 

  13. Hamill, O. P. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 451–471 (Plenum, New York, 1983).

    Book  Google Scholar 

  14. Lew, J. Z. & Ferreira, H. G. Curr. Topics Membrane Transport 10, 217–277 (1978).

    Article  CAS  Google Scholar 

  15. Fishman, M. C. & Spector, I. Proc. natn. Acad. Sci. U.S.A. 78, 5245–5249 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Naspitz, C. K. & Richter, M. Prog. Allergy 12, 1–85 (1968).

    CAS  Google Scholar 

  17. Oppenheim, J. J. & Rosenstreich, D. L. Prog. Allergy 20, 65–194 (1976).

    CAS  PubMed  Google Scholar 

  18. Wedner, H. J. & Parker, C. W. Prog. Allergy 20, 195–300 (1976).

    CAS  PubMed  Google Scholar 

  19. Resch, K. & Kirchner, H. Mechanisms of Lymphocyte Activation (Elsevier, Amsterdam, 1981).

    Google Scholar 

  20. Kieffer, H., Blume, A. J. & Kaback, H. R. Proc. natn. Acad. Sci. U.S.A. 77, 2200–2204 (1980).

    Article  ADS  Google Scholar 

  21. Tsien, R. Y., Pozzan, T. & Rink, T. J. Nature 295, 68–71 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Quastel, M. R. & Kaplan, J. G. Expl. Cell Res. 63, 230–233 (1970).

    Article  CAS  Google Scholar 

  23. Segel, G. B., Simon, W. & Lichtman, M. A. J. clin. Invest. 64, 834–841 (1979).

    Article  CAS  Google Scholar 

  24. Metcalfe, J. C., Pozzan, T., Smith, G. A. & Hesketh, T. R. Biochem. Soc. Symp. 45, 1–26 (1980).

    CAS  PubMed  Google Scholar 

  25. Yeh, J. Z., Oxford, G. S., Wu, C. H. & Narahashi, T. J. gen. Physiol. 68, 519–535 (1976).

    Article  CAS  Google Scholar 

  26. Hermann, A. & Gorman, A. L. F. J. gen. Physiol. 78, 63–86 (1981).

    Article  CAS  Google Scholar 

  27. Felber, S. M. & Brand, M. D. Biochem. J. 210, 885–891 (1982).

    Article  Google Scholar 

  28. Deutsch, C. J., Holian, A., Holian, S. K., Danielle, R. P. & Wilson, D. F. J. cell. Physiol. 99, 79–94 (1979).

    Article  CAS  Google Scholar 

  29. Gupta, S. & Good, R. A. Cell. Immun. 34, 10–18 (1977).

    Article  CAS  Google Scholar 

  30. Sillén, L. G. & Martel, A. E. Chem. Soc. Spec. Publ. 17 (1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeCoursey, T., Chandy, K., Gupta, S. et al. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?. Nature 307, 465–468 (1984). https://doi.org/10.1038/307465a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307465a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing