β-Adrenergic modulation of calcium channels in frog ventricular heart cells

Abstract

Adrenergic modulation of calcium channels profoundly influences cardiac function1,2, and has served as a prime example of neurohormonal regulation of voltage-gated ion channels1–7. Channel modulation and increased Ca influx2,8,9 are mediated by elevation of intracellular cyclic AMP10–17 and protein phosphorylation18,19. The molecular mechanism of the augmented membrane Ca conductance has attracted considerable interest. An increase in the density of functional channels has often been proposed20–22, but there has previously been no direct evidence. Single-channel recordings show that isoprenaline or 8-bromocyclic AMP increase the proportion of time individual channels spend open by prolonging openings and shortening the closed periods between openings2,23–25. To look for an additional contribution of changes in the number of functional channels, we applied ensemble fluctuation analysis26 to whole-cell recordings27,28 of cardiac Ca channel activity. Here we present evidence that in frog ventricular heart cells β-adrenergic stimulation increases NF, the average number of functional Ca channels per cell. We also find that isoprenaline slows the time course of both activation and inactivation, and that the enhancement of peak current decreases gradually with greater membrane depolarization.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Tsien, R. W. & Siegelbaum, S. A. in Physiology of Membrane Disorders (eds Andreoli, T. E., Huffman, J. F. & Fanestil, D. D.) 517–538 (Plenum, New York, (1978).

  2. 2

    Reuter, H. A. Rev. Physiol. 41, 413–424 (1979).

  3. 3

    Kehoe, J. & Marty, A. A. Rev. Biophys. Bioengng 9, 437–465 (1980).

  4. 4

    Nicoll, R. A. Trends Neurosci. 5, 369–374 (1983).

  5. 5

    Reuter, H. Nature 301, 569–574 (1983).

  6. 6

    Tsien, R. W. A. Rev. Physiol. 45, 341–358 (1983).

  7. 7

    Siegelbaum, S. A. & Tsien, R. W. Trends Neurosci. 6, 307–313 (1983).

  8. 8

    Vassort, G. et al. Pflügers Arch. ges. Physiol. 309, 70–81 (1969).

  9. 9

    Brown, H. F., McNaughton, P. A., Noble, D. & Noble, S. J. Phil. Trans. R. Soc. B270, 527–537 (1975).

  10. 10

    Tsien, R. W., Giles, W. & Greengard, P. Nature new Biol. 240, 181–183 (1972).

  11. 11

    Meinertz, T., Nawrath, H. & Scholz, H. Naunyn-Schmiedebergs Archs Pharmak. 279, 327–338 (1973).

  12. 12

    Watanabe, A. M. & Besch, H. R. Circulation Res. 35, 316–324 (1974).

  13. 13

    Reuter, H. J. Physiol., Lond. 242, 429–451 (1974).

  14. 14

    Vogel, S. & Sperelakis, N. J. molec. cell. Cardiol. 13, 51–64 (1981).

  15. 15

    Trautwein, W., Taniguchi, J. & Noma, A. Pflügers Arch. ges. Physiol. 392, 307–314 (1982).

  16. 16

    Nargeot, J., Nerbonne, J. M., Engels, J. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. (in the press).

  17. 17

    Tsien, R. W. Adv. Cyclic Nucleotide Res. 8, 363–420 (1977).

  18. 18

    Osterrieder, W. et al. Nature 298, 576–578 (1977).

  19. 19

    Rinaldi, M. L., Capony, J.-P. & Demaille, J. G. J. molec. cell. Cardiol. 14, 279–289 (1982).

  20. 20

    Sperelakis, N. & Schneider, J. Am. J. Cardiol. 37, 1079–1085 (1976).

  21. 21

    Reuter, H. & Scholz, H. J. Physiol., Lond. 264, 49–62 (1977).

  22. 22

    Niedergerke, R. & Page, S. Proc. R. Soc. B197, 333–367 (1977).

  23. 23

    Reuter, H., Stevens, C. F., Tsien, R. W. & Yellen, G. Nature 297, 501–504 (1982).

  24. 24

    Cachelin, A. B., de Peyer, J. E., Kokubun, S. & Reuter, H. Nature 304, 462–464 (1983).

  25. 25

    Reuter, H., Cachelin, A. B., de Peyer, J. E. & Kokubun, S. Cold Spring Harb. Symp. quant. Biol. 48 (in the press).

  26. 26

    Sigworth, F. J. J. Physiol., Lond. 307, 97–129 (1980).

  27. 27

    Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

  28. 28

    Fenwick, E. M., Marty, A. & Neher, E. J. Physiol., Lond. 331, 599–635 (1982).

  29. 29

    Cranefield, P. F. & Gadsby, D. C. J. Physiol., Lond. 318, 34–35P (1981).

  30. 30

    Lee, K. S. & Tsien, R. W. Nature 302, 790–794 (1983).

  31. 31

    Sigworth, F. J. J. Physiol., Lond. 307, 131–142 (1980).

  32. 32

    Noma, A., Kotake, H. & Irisawa, H. Pflügers Arch. ges. Physiol. 388, 1–9 (1980).

  33. 33

    Kass, R. A., Wiegers, S. E. J. Physiol., Lond. 322, 541–558 (1982).

  34. 34

    Hume, J. R. & Giles, W. J. gen. Physiol. 78, 19–42 (1981).

  35. 35

    Tarr, M., Trank, J. W. Experientia 32, 338–339 (1976).

  36. 36

    Harary, I., Hoover, F. & Farley, B. Meth. Enzym. 32, 740–745 (1974).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.