Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dating diagenesis in a petroleum basin, a new fluid inclusion method

Abstract

The final porosity and permeability of sandstone petroleum reservoirs is greatly affected by the diagenetic growth of minerals after deposition. For example a sand may be deposited with a porosity of 25% and a permeability of 5,000 mdarcy (mD)1; diagenetic growth of quartz around detrital sand grains may leave a rock with only 10% porosity, and later growth of clays may partly fill these remaining pores and block inter-pore connections, reducing permeability to 100 mD (ref. 2). If the depth and timing of such diagenetic alteration can be measured and the extent of diagenesis estimated, then prediction of the diagenetic state of undrilled sandstones may become possible and diagenesis related more closely to the timing of hydrocarbon migration and the formation of hydrocarbon traps. We present an example of a new method for estimating the date of quartz diagenesis using a combination of techniques from thin section petrography, fluid inclusion thermometry, organic geochemical thermometry and sedimentary basin stratigraphic analysis. These results suggest that quartz in the Beatrice oilfield was precipitated from moving and cooling pore fluids, at a temperature between 68 °C and 94 °C in the late Jurassic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pryor, W. A. Bull. Am. Ass. Petrol. Geol. 57 162–189 (1973).

    Google Scholar 

  2. Hayes, J. B. Soc. Econ. Paleont. Mineral. Spec. Publ. 26, 127–139 (1979).

    Google Scholar 

  3. Linsley, P. N., Potter, H. C., McNab, G. & Racher, D. Mem. Am. Ass. Petrol. Geol. 30, 117–130 (1980).

    Google Scholar 

  4. Haszeldine, R. S., Samson, I. M. & Cornford, C. Clays Clay Miner. (submitted).

  5. Loucks, R. G., Babout, D. G. & Galloway, W. E. Trans. Gulf-Cst Ass. geol. Soc 27, 109–120 (1977).

    Google Scholar 

  6. Curtis, C. D. in Geochemistry and Exploration of Europe (ed. Brooks, J.) 113–125, (Blackwells, London, 1983).

    Google Scholar 

  7. Holland, H. D. & Malinin, S. D. in Geochemistry of Hydrothermal Ore Deposits 2nd Edn (ed. Barnes, H. L.) 461–508 (Wiley, New York, 1979).

    Google Scholar 

  8. Fournier, R. O. & Marshall, W. L. Geochim. cosmochim. Acta 47, 587–596 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Burruss, R. C. Am. J. Sci. 281, 1104–1126 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Crawford, M. L. in Fluid Inclusions: Applications to Petrology (eds Hollister, L. S. & Crawford, M. L.) Min. Ass. Canada Short Cse, Handbk 6, 75–100 (1981).

    Google Scholar 

  11. Potter, R. W. II, Clyne, M. A. & Brown, D. C. Econ. geol. 73, 284–285 (1978).

    Article  CAS  Google Scholar 

  12. Cornford, C., Morrow, J. A., Turrington, A., Miles, J. A. & Brooks, J. in Petroleum Geochemistry and Exploration of Europe. (ed. Brooks, J) 175–194 (Academic, London, 1983).

    Google Scholar 

  13. Mackenzie, A. S. & Maxwell, J. G. in Organic Maturation Studies and Fossil Fuel Exploration (ed. Brooks, J.), 239–254 (Academic, London, 1981).

    Google Scholar 

  14. McKenzie, D., Mackenzie, A. S., Maxwell, J. R. & Sajgo, C. Nature 301, 504–506 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Potter, R. W. II & Brown, D. C. Bull. U.S. geol. Surv. 1421-C (1977).

  16. Haas, J. L. Jr Bull. U.S. geol Surv. 1421-A (1976).

  17. Fyfe, W. S., Price, N. J. & Thomson, A. B. Fluids in the Earth's Crust (Elsevier, Amsterdam, 1977).

    Google Scholar 

  18. Chesher, J. A. & Bacon, M. Inst. geol. Sci. Rep. 75/11 (HMSO, London 1975).

  19. Harland, W. B. et al. A Geologic Timescale (Cambridge University Press, 1982).

    Google Scholar 

  20. Perrier, R. & Quiblier, J. Bull. Am. Ass. Petrol. Geol. 58, 507–520 (1974).

    Google Scholar 

  21. Price, L. C. J. Petrol Geol. 6, 5–38 1983).

    Article  ADS  CAS  Google Scholar 

  22. McKenzie, D. Earth planet. Sci. Lett. 55, 87–98 (1981).

    Article  ADS  Google Scholar 

  23. Hower, J., Eslinger, E. V., Hower, M. E. & Perry, E. A. Bull. geol. Soc. Am. 87, 725–737 (1976).

    Article  CAS  Google Scholar 

  24. Boles, J. R. & Franks, S. G. J. sedim. Petrol. 49, 55–70 (1979).

    CAS  Google Scholar 

  25. Dypvik, H. Bull. Am. Ass. Petrol. Geol. 67, 160–165 (1983).

    Google Scholar 

  26. Pearson, M. J., Watkins, D. & Small, J. S. Develop. Sedimentol. 35, 665–675 (Elsevier, Amsterdam 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haszeldine, R., Samson, I. & Cornford, C. Dating diagenesis in a petroleum basin, a new fluid inclusion method. Nature 307, 354–357 (1984). https://doi.org/10.1038/307354a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307354a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing