Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large increase in enzyme–substrate affinity by protein engineering

Abstract

A single point mutation has been engineered in the tyrosyl-tRNA synthetase that improves its affinity (KM) for its substrate ATP by a factor of 100. In the crystal structure of the tyrosyl tRNA synthetase (of Bacillus stearothermophilus), the side-chain hydroxyl of Thr 51 appears to make a weak hydrogen bond with the AMP moiety of the substrate intermediate, tyrosyl adenylate. In the absence of substrate, however, the hydroxyl group should make a strong hydrogen bond with water which would favour dissociation of the enzyme–substrate complex. We have used oligodeoxynucleotide-directed mutagenesis to construct two point mutants at this site: one to remove the hydroxyl group (Thr 51 → Ala 51) and the other, in addition, to distort the local polypeptide backbone (Thr 51 → Pro 51). We report here that both mutants have increased activity (kcat/KM for ATP) but one mutant (Pro 51) shows a massive 25-fold increase due mainly to a lowered KM for ATP. This demonstrates dramatically the potential of in vitro mutagenesis for improving the affinity of an enzyme for its substrate.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Hall, A. & Knowles, J. R. Nature 264, 803–804 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Hall, B. G. Genetics 89, 453–465 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall, B. G. & Zuzel, T. Proc. natn. Acad. Sci. U.S.A. 77, 3529–3533 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Paterson, A. & Clarke, P. H. J. gen. Microbiol. 114 75–85 (1979).

    Article  CAS  Google Scholar 

  5. Turberville, C. & Clarke, P. H. FEMS Microbiol. Lett. 10, 87–90 (1981).

    Article  CAS  Google Scholar 

  6. Wu, T. T., Lin, E. C. C. & Tanaka, S. J. Bact. 96, 447–456 (1968).

    CAS  PubMed  Google Scholar 

  7. Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M. & Smith, M. Nature 299, 756–758 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Wilkinson, A. J., Fersht, A. R., Blow, D. M. & Winter, G. Biochemistry 22, 3581–3586 (1983).

    Article  CAS  Google Scholar 

  9. Monteilhet, C. & Blow, D. M. J. molec. Biol. 122, 407–417 (1978).

    Article  CAS  Google Scholar 

  10. Rubin, J. & Blow, D. M. J. Molec. Biol. 145, 489–500 (1981).

    Article  CAS  Google Scholar 

  11. Bhat, T. N., Blow, D. M., Brick, P. & Nyborg, J. J. molec. Biol. 158, 699–709 (1982).

    Article  CAS  Google Scholar 

  12. Zoller, M. & Smith, M. Nucleic Acids Res. 10, 6487–6500 (1982).

    Article  CAS  Google Scholar 

  13. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Acad. Sci. U.S.A. 80, 3963–3965 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Winter, G., Koch, G. L. E., Hartley, B. S. & Barker, D. G., Eur. J. Biochem. 132, 383–387 (1983).

    Article  CAS  Google Scholar 

  16. Gait, M. J., Matthes, H. W. D., Singh, M., Sproat, B. S. & Titmas, R. C. Nucleic Acids Res. 10, 6243–6254 (1982).

    Article  CAS  Google Scholar 

  17. Winter, G. & Fields, S. Nucleic Acids Res. 8, 1965–1974 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, A., Fersht, A., Blow, D. et al. A large increase in enzyme–substrate affinity by protein engineering. Nature 307, 187–188 (1984). https://doi.org/10.1038/307187a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307187a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing