Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts

Abstract

Clinical organ transplantation between genetically disparate individuals currently requires the use of chemotherapeutic agents to suppress the rejection reaction. The deleterious side effects of these reagents and their inability to prevent rejection completely has led to a continuing search for methods to induce specific transplantation tolerance in adult recipients. Numerous experimental animal models utilizing irradiation and bone marrow transplantation coincident with organ transplantation have been proposed1–4. Bone marrow transplantation, however, has its own major complications, including graft–versus-host reactions and immunoincompetence, probably resulting from a failure of appropriate immune cell interactions in the reconstituted host5,6. We have now attempted to overcome these difficulties by reconstituting the irradiated host with T-cell depleted bone marrow containing both host (syngeneic) and donor (allogeneic or xenogeneic) components. This technique leads to long-term survival of the reconstituted animals and specific prolongation of subsequent skin grafts of donor type. Animals reconstituted in this fashion are fully reactive to third-party allografts and xenografts and do not appear to manifest signs of graft–versus-host disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rapaport, F. T. et al. Transplantn Proc. 9, 891–894 (1977).

    CAS  Google Scholar 

  2. Slavin, S., Strober, S., Fuks, Z. & Kaplan, S. J. exp. Med. 146, 34–48 (1977).

    Article  CAS  Google Scholar 

  3. Dittmer, J. & Bennett, M. Molec. Cell. Biochem. 21, 83–94 (1978).

    Article  CAS  Google Scholar 

  4. Myburgh, J. A., Smit, J. A., Browde, S. & Hill, R. R. H. Transplantation 29, 401–404 (1980).

    Article  CAS  Google Scholar 

  5. Zinkernagel, R. M., Althage, A., Callahan, G. & Welsh, R. M. J. Immun. 124, 2356–2365 (1980).

    CAS  PubMed  Google Scholar 

  6. Rayfield, L. S. & Brent, L. Transplantation 36, 183–189 (1983).

    Article  CAS  Google Scholar 

  7. Auchincloss, H. Jr & Sachs, D. H. Transplantation 36, 436–441 (1983).

    Article  Google Scholar 

  8. Arn, J. S., Riordan, S. E., Pearson, D. & Sachs, D. H. J. immun. Meth. 55, 141–153 (1982).

    Article  CAS  Google Scholar 

  9. Billingham, R. E. in Transplantation of Tissues and Cells (eds Billingham, R. E. & Silvers, W. K.) (Wistar Institute, Philadelphia, 1961).

    Google Scholar 

  10. Sharrow, S. O., Mathieson, B. J. & Singer, A. J. Immun. 126, 1327–1335 (1981).

    CAS  PubMed  Google Scholar 

  11. Gasser, D. L. Adv. Immun. 25, 93–139 (1977).

    Article  CAS  Google Scholar 

  12. Krown, S. E., Coico, R., Scheid, M. P., Fernandez, G. & Good, R. A. Clin. immun. Immunopath. 19, 268–283 (1981).

    Article  CAS  Google Scholar 

  13. Singer, A., Hathcock, K. S. & Hodes, R. J. J. exp. Med. 153, 1286–1301 (1981).

    Article  CAS  Google Scholar 

  14. Muller-Ruchholtz, W., Muller Hermelink, H. K. & Wottge, H. U. Transplant Proc. 11, 517–521 (1979).

    CAS  PubMed  Google Scholar 

  15. Billingham, R. E., Brent, L. & Medawar, P. B. Nature 172, 603 (1953).

    Article  ADS  CAS  Google Scholar 

  16. Streilein, J. W. & Klein, J. J. Immun. 119, 2147–2150 (1977).

    CAS  Google Scholar 

  17. Boyse, E. A., Lance, E. M., Carswell, E. A., Cooper, S. & Old, L. J. Nature 227, 901–903 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ildstad, S., Sachs, D. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170 (1984). https://doi.org/10.1038/307168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307168a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing