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Applied mathematics 

Scattering by fractal objects 
from Eric Jakeman 

" A FRACTAL is a mathematical set or object 
whose form is extremely irregular and/or 
fragmented at all scales ... So runs Mandel­
brot's definition of the term he coined in an 
essay first published! in French in 1975. He 
points out that classical mathematics has 
on the whole been concerned with Eucli­
dean geometry based on the notion of 
smooth shapes and with the continuous 
evolving dynamics of Newton, whereas 
most natural phenomena, objects and 
patterns are abruptly changing, with 
structure on many scales. Thus the mathe­
matical description of a whole range of 
familiar objects ranging from coastlines to 
trees presents great difficulties. In his 
essay, Mendelbrot shows how these can be 
resolved by the concepts of fractal 
geometry2 . 

To reduce the totality of fragmented 
objects to a class requiring minimal para­
meterization, it is necessary to introduce 
the notion of 'scaling', which refers to the 
similarity in appearance of an object when 
it is subject to arbitrary magnification. 
Regular scaling fractals can be generated 
by following simple iterative construction 
procedures. The best known object of this 
kind is the Von-Koch 'snowflake' curve3 
obtained by repeatedly replacing the 
middle third of each element of the 
construct by two vertices of the appro­
priate equilateral triangle (Fig. I). This 
leads to an object of fmite area but infinite 
perimeter. Its bounding curve is evidently 
continuous but does not have a locally well­
defined direction (slope or derivative). 

Although a number of these strange but 
regular geometrical constructs are known, 
the vast majority of natural objects are 
fragmented in an irregular way and it is in 
the description of these randomly varying 
structures that the concepts of fractal geo­
metry are proving most valuable. An early 
investigation of one such structure is attri­
buted to L.F. Richardson, who found that 
the length of land frontiers and coastlines 
appears to increase as the resolution of the 
measurement improves2. Thus, if the 
length of the coastline of Britain is 
determined using a lOO-km measuring 
stick, the answer will be smaller than that 
obtained using a 100km stick, which will 

The Von-Koch snowflake curve 

0028~836/84/0201 \o~1:IO! .OO 

resolve and therefore have to negotiate the 
longer distance round smaller scale 
structures such as river estuaries and inlets. 

This observation leads quite naturally to 
the principle parameter characterizing a 
scaling fractal curve, for it is found that if 
the length of the measuring stick is I then 
the apparent length of such a curve is 
proportional to Il-D, where D is a number 
greater than unity, but not necessarily 
integral; which uniquely characterizes the 
scaling behaviour of the curve. The value 
of D is in fact a measure of the density with 
which the curve fills the space (surface, 
volume) in which it is embedded and can be 
interpreted as an anomalous or fractal 
dimension. 

Although Mandelbrot's ideas have 
diffused rapidly, the most striking appli­
cations of his work remain the numerical 
simulations of random fractal objects such 
as islands and landscapes which, in spite of 
being entirely artificially contrived, 
acquire an uncannily familiar appearance 
when supplemented by suitable shadowing 
effects2. The ability to recognize the 
familiar in this context is dependent, of 
course, on information being carried to the 
eye by light scattered from the object and 
there is indeed increasing interest in the 
properties not only of light but of other 
frequencies of the electromagnetic 
spectrum as well as of sound waves which 
have been scattered by fractal objects. 

In fact there is a long history of interest in 
one multi-scale scattering system - the 
turbulent medium. Although not referred 
to as such, a fractal description involving 
the Kolmogorov spectrum has commonly 
been employed since the pioneering work 
of Tatarski in the early 1960s4 • The full 
implications of using models of this type 
have only become clear recently, however, 
through the quantitative investigation of 
scattering by simple models of fractal 
surfacess. Since the slope of a fractal 
surface is ill-defined, ray or geometrical 
optics do not apply and the scattering is of 
an entirely diffractive nature. This results 
in relatively low contrast intensity (bright­
ness) patterns6 that are very different from 
those generated by smoothly varying 
surfaces whose lens-like behaviour 

produces bright geometrical features of the 
kind which can often be seen on the floor of 
a swimming pool. 

In the case of pulsed scattering, the 
fractal dimension of the surface is 
represented in the temporal decay of the 
tail of the return pulse, so that this kind of 
surface should in principle be easily recog­
nizable and capable of characterization by 
remote sensing techniques7 • In practice 
variations of reflectivity may confuse such 
measurements, while real surfaces will also 
have smallest (inner) and largest (outer) 
scale sizes with a hierarchical or fractal 
structure in between. To investigate the 
latter regime, the wavelength of the 
probing radiation has to be much greater 
than the height fluctuations over inner­
scale sized elements of the surface (so that 
their scattering effect can be neglected by 
comparison with that of the larger scales) 
and the receiving optics must be designed 
to collect radiation from an area of the 
surface which is smaller than the outer scale 
size. 

Although many solid surfaces of both 
microscopic and geophysical proportions 
appear to be fractal 8, at least over some 
limited range of scale sizes, there is 
evidence that certain fluid systems are 
better described as objects with fractal 
slope. The sea surface is one such system, 
for example. Ray or geometrical optics 
effects do play an important role in deter­
mining the characteristics of the scattered 
intensity pattern in this case, leading to 
strong variations in brightness. Since the 
local surface curvature remains ill-<iefined, 
however, lens-like behaviour does not 
occur and a new kind of geometrical optics 
or short-wave limit is found which is free 
from the catastrophes (caustics, focusing 
points) associated with smoothly varying 
surfaces. The statistical properties of the 
scattered intensity remain finite in this limit 
and can again be related to the fractal 
dimension 9. 

The full implications of current work on 
fractal scattering cannot yet be properly 
assessed but will surely extend beyond the 
immediate practical objectives of the 
investigations. Certainly many new and 
sometimes surprising results are emerging 
by recognizing the role of fractals in well­
established areas of science as well as in the 
more exotic frontier areas such as dynami­
cal systems and chaos. 0 
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