Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin μ locus in a Burkitt lymphoma

Abstract

The association between certain human tumours and characteristic chromosomal abnormalities has led to the hypothesis that specific cellular oncogenes1 may be involved and consequently ‘activated’ in these genetic recombinations2,3. This hypothesis has found strong support in the recent findings that some cellular homologues of retroviral onc genes are located in chromosomal segments which are affected by specific tumour-related abnormalities (see ref. 4 for review). In the case of human undifferentiated B-cell lymphoma (UBL) and mouse plasmacytomas, cytogenetic and chromosomal mapping data have identified characteristic chromosomal recombinations directly involving different immunoglobulin genes and the c-myc oncogene (for review see refs 5, 6). In UBLs carrying the t(8:14) translocation it has been shown that the human c-myc gene7 is located on the region of chromosome 8 (8q24) which is translocated to the immunoglobulin heavy-chain locus (IHC) on chromosome 148–10. Although it is known that the chromosomal breakpoints can be variably located within or outside the c-myc locus and within the IHCμ (refs 9,11) or IHCγ locus12, the recombination sites have not been exactly identified and mapped in relation to the functional domains of these loci. We report here the identification and characterization of two reciprocal recombination sites between c-myc and IHCμ in a Burkitt lymphoma. Nucleotide sequencing of the cross-over point joining chromosomes 8 and 14 on chromosome 14q– shows that the onc gene is interrupted within its first intron and joined to the heavy-chain μ switch region. This recombination predicts that the translocated onc gene would code for a rearranged mRNA but a normal c-myc polypeptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Cristina López, Birgit Burkhardt, … Reiner Siebert

References

  1. Bishop, J. M. A. Rev. Biochem. 52, 301–354 (1983).

    Article  CAS  Google Scholar 

  2. Klein, G. Nature 294, 313–318 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Rowley, J. Science 216, 729–751 (1982).

    Article  ADS  Google Scholar 

  4. Yunis, J. J. Science 221, 227–236 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Klein, G. Cell 32, 311–315 (1983).

    Article  CAS  Google Scholar 

  6. Perry, R. P. Cell 33, 647–649 (1983).

    Article  CAS  Google Scholar 

  7. Dalla-Favera, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 649–6501 (1982).

    Google Scholar 

  8. Dalla-Favera, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7824–7827 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Taub, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7837–7841 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Neel, B. S., Jhanwar, S. C., Chaganti, R. S. K. & Hayward, W. S. Proc. natn. Acad. Sci. U.S.A. 79, 7842–7846 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Dalla-Favera, R. et al. Science 219, 963–967 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Hamlyn, P. H. & Rabbits, T. H. Nature 304, 135–139 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Benjamin, D. et al. J. Immun. 129, 1336–1341 (1982).

    CAS  PubMed  Google Scholar 

  14. Maniatis, T., Fritsch, E. F., Sambrook, J. (eds) Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

  15. Colby, W. S., Chen, E. Y., Smith, D. H. & Levinson, A. D. Nature 201, 722–725 (1983).

    Article  ADS  Google Scholar 

  16. Watson, D. K. et al. Proc. natn. Acad. Sci. U.S.A. 80, 3642–3645 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Watt, R. et al. Nature 303, 725–728 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Ravetch, J. V. et al. Cell 27, 583–591 (1981).

    Article  CAS  Google Scholar 

  19. Korsmeyer, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 28, 7096–7100 (1980).

    Google Scholar 

  20. Erickson, J., Finan, J. B., Nowell, P. L. & Croce, C. M. Proc. natn. Acad. Sci. U.S.A. 79, 5611–5615 (1982).

    Article  ADS  Google Scholar 

  21. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Ravetch, J., Kirsch, I. R. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 6734–6738 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Rabbits, T. H. et al. Nucleic Acids Res. 9, 4509–4513 (1981).

    Article  Google Scholar 

  24. Philip, T. et al. Int. J. Cancer 28, 417–420 (1981).

    Article  CAS  Google Scholar 

  25. Khoury, G. & Gruss, P. Cell 33, 313–314 (1983).

    Article  CAS  Google Scholar 

  26. Gillies, S. O., Morrison, S. L., Oi, V. T. & Tonegawa, S. Cell 33, 717–728 (1983).

    Article  CAS  Google Scholar 

  27. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  28. Mercola, M., Wang, X. F., Olsen, J. & Calame, K. Science 221, 663–665 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Ravetch, J. V., Kirsch, I. R. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 6734–6738 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Lautenberger, J. A. et al. Proc. natn. Acad. Sci. U.S.A. 78, 1518–1522 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Neel, B. S. et al. J. Virol. 44, 158–166 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gelmann, E. P., Wang-Peng, J., Kao-Shan, C. S., Magrath, I. T. & Dalla-Favera, R. Nature (submitted).

  33. Maguire, R. R., Robins, T. S., Thorgeirsson, S. S. & Heilman, C. A. Proc. natn. Acad. Sci. U.S.A. 80, 1942–1950 (1983).

    Article  ADS  Google Scholar 

  34. Erickson, J. et al. Proc. natn. Acad. Sci. U.S.A. 80, 820–824 (1983).

    Article  ADS  Google Scholar 

  35. Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596–602 (1983).

    Article  ADS  CAS  Google Scholar 

  36. Westin, E. H. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2490–2494 (1982).

    Article  ADS  CAS  Google Scholar 

  37. Dalla-Favera, R., Wong-Staal, F. & Gallo, R. C. Nature 299, 61–62 (1982).

    Article  ADS  CAS  Google Scholar 

  38. Wahl, S. M., Stern, M. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 76, 2032–2036 (1979).

    Article  ADS  Google Scholar 

  39. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  40. Gelmann, E. P., Petri, E., Cetta, A. & Wong-Staal, F. J. Virol. 41, 593–604 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelmann, E., Psallidopoulos, M., Papas, T. et al. Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin μ locus in a Burkitt lymphoma. Nature 306, 799–803 (1983). https://doi.org/10.1038/306799a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306799a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing