RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor


Calcitonin-gene-related peptide (CGRP) and adrenomedullin are related peptides with distinct pharmacological profiles. Here we show that a receptor with seven transmembrane domains, the calcitonin-receptor-like receptor (CRLR), can function as either a CGRP receptor or an adrenomedullin receptor, depending on which members of a new family of single-transmembrane-domain proteins, which we have called receptor-activity-modifying proteins or RAMPs, are expressed. RAMPs are required to transport CRLR to the plasma membrane. RAMP1 presents the receptor at the cell surface as a mature glycoprotein and a CGRP receptor. RAMP2-transported receptors are core-glycosylated and are adrenomedullin receptors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2: Xenopus oocytes expressing RAMP1 show large and dose-dependent responses to CGRP.
Figure 3: Expression of RAMP1 with CRLR in oocytes and HEK293T cells.
Figure 4: RAMP1 and CRLR are localized together on the cell surface when they are co-expressed.
Figure 5: RAMP1 acts to increase the relative molecular mass of CRLR at the same time as specific binding to 125I-labelled CGRP1 becomes apparent.
Figure 6: Amino-acid sequences of human RAMPs 1, 2 and 3, aligned for comparison.
Figure 7: A northern blot analysis of mRNA encoding RAMPs 1, 2 and 3 in cell lines and tissues.
Figure 8: Expression of RAMP2 plus CRLR in oocytes and in HEK293T cells.
Figure 9


  1. 1

    Poyner, D. R. Calcitonin gene-related peptide: multiple actions, multiple receptors. Pharmacol. Ther. 56, 23–51 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Muff, R., Born, W. & Fischer, J. A. Calcitonin, calcitonin gene related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur. J. Endocrinol. 133, 17–20 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Zimmermann, U. et al. Identification of adrenomedullin receptors in cultured rat astrocytes and in neuroblastoma × glioma hybrid cells (NG108-15). Brain Res. 724, 238–245 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Wang, X. et al. Discovery of adrenomedullin in rat ischaemic cortex and evidence for its role in exacerbating focal brain ischaemic damage. Proc. Natl Acad. Sci. USA 92, 11480–11484 (1995).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lin, H. Y. et al. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254, 1022–1024 (1991).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Njuki, F. et al. Anew calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin. Sci. 85, 385–388 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Chang, C.-P., Pearse, R. V., O'Connell, S. & Rosenfeld, M. G. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 11, 1187–1195 (1993).

    CAS  Article  Google Scholar 

  8. 8

    Fluhmann, B., Muff, R., Hunziker, W., Fischer, J. A. & Born, W. Ahuman orphan calcitonin receptor-like structure. Biochem. Biophys. Res. Comun. 206, 341–347 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Kapas, S., Catt, K. J. & Clark, A. J. Cloning and expression of cDNA encoding a rat adrenomedullin receptor. J. Biol. Chem. 270, 25344–25347 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Kapas, S. & Clark, A. J. L. Identification of an orphan receptor gene as a type 1 calcitonin gene-related receptor. Biochem. Biophys. Res. Commun. 217, 832–838 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Luebke, A. E., Dahl, G. P., Roos, B. A. & Dickerson, I. M. Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay. Proc. Natl Acad. Sci. USA 93, 3455–3460 (1996).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Aiyar, N. et al. AcDNA encoding the calcitonin gene-related peptide type 1 receptor. J. Biol. Chem. 271, 11325–11329 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Zimmermann, U. et al. Calcitonin gene-related peptide (CGRP) receptors are linked to cyclic adenosine monophosphate production in SK-N-MC human neuroblastoma cells. Neurosci. Lett. 119, 195–198 (1990).

    Article  Google Scholar 

  14. 14

    Uezono, Y. et al. Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes. Recept. Chan. 1, 233–241 (1993).

    CAS  Google Scholar 

  15. 15

    Guillemare, E., Lazdunski, M. & Honore, E. CGRP-induced activation of KATPchannels in follicular Xenopus oocytes. Pflugers Arch. 428, 604–609 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Han, Z.-Q. et al. The interaction of CGRP and adrenomedullin with a receptor expressed in the rat pulmonary vascular endothelium. J. Mol. Endocrinol. 18, 267–272 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Stangl, D., Born, W. & Fischer, J. A. Characterisation and photoaffinity labeling of a Calcitonin Gene-Related Peptide receptor solubilised from human cerebellum. Biochemistry 30, 8605–8611 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Foord, S. M. & Craig, R. K. Isolation and characterisation of a human calcitonin-gene-related-peptide receptor. Eur. J. Biochem. 170, 373–379 (1987).

    CAS  Article  Google Scholar 

  19. 19

    Teasdale, R. D. & Jackson, M. R. Signal mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Annu. Rev. Cell Dev. Biol. 12, 27–54 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Zimmermann, U. et al. Adrenomedullin and calcitonin gene-related peptide interact with the same receptor in cultured human neuroblastoma SK-N-MC cells. Peptides 16, 421–424 (1995).

    CAS  Article  Google Scholar 

  21. 21

    1. Owji, A. A. et al. Characterisation and molecular identification of adrenomedullin binding sites in the rat spinal cord: a comparison with calcitonin gene-related peptide receptors. J. Neurochem. 67, 2172–2179 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Osajima, A. et al. Adrenomedullin-sensitive receptors are preferentially expressed in cultured rat mesangial cells. Eur. J. Pharmacol. 315, 319–325 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Kato, J., Kitamura, K., Kangawa, K. & Eto, T. Receptors for adrenomedullin in human vascular endothelial cells. Eur. J. Pharmacol. 289, 383–385 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Perry, K. J. et al. Characterization of amylin and calcitonin receptor binding in the mouse alpha-thyroid-stimulating hormone thyrotroph cell line. Endocrinology 138, 3486–3496 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Chen, W. J. et al. Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. Mol. Pharmacol. 52, 1164–1175 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Ponath, P. D. et al. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 183, 2437–2448 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Simmons, D. & Seed, B. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J. Immunol. 141, 2797–2800 (1988).

    CAS  Google Scholar 

Download references


We thank D. Cousens for probing the MTN blots; E. Murrison for help with cloningRAMP2; S. Brown for isolation of the CRLR/RAMP1 cell lines; J. M. Rommens and L. C. Tsui for CFTR; W. Born and J. Fischer for CRLR and for discussions; and members of the RSU for their support.

Author information



Corresponding author

Correspondence to Steven M. Foord.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McLatchie, L., Fraser, N., Main, M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998). https://doi.org/10.1038/30666

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing