use a plasmid carrying $U R A 3$ and to select for uracil-independent transformants. It was then found that partial repair of the gap in HIS3 sometimes occurred, probably resulting from enlargement of the gap beyond the region of homology to yeast DNA. Gene conversion was also observed in DNA flanking a gap. Thus, transformants were occasionally found that had a functional chromosomal HIS3 gene but an unstable, that is, nonintegrated, plasmid. This derivation of $\mathrm{HIS3}^{+}$without gap repair implied transfer from plasmid to chromosome of the normal allele of the chromosomal his3 mutation, and was attributed to the formation of heteroduplex DNA and subsequent mismatch repair. On the other hand, several experiments indicated that linear plasmid DNA could be degraded and then the enlarged gap repaired. It was evident that conversion in regions flanking the original gap might occur by either mechanism.

The recombination model proposed by Szostak et al. ${ }^{2}$ postulates that recombination is initiated by a duplex break, enlarged to form a gap. The gap is repaired by the process already outlined. This results in conversion for mutant sites within the gap and in heteroduplex DNA for mutant sites flanking the gap. Szostak et al. ${ }^{2}$ propose that events in these heteroduplex regions follow the MeselsonRadding model ${ }^{7}$. So the new hypothesis can be visualised as a region of duplex
repair flanked on each side by regions conforming to the predictions of the Meselson-Radding model.

As Szostak et al. ${ }^{2}$ point out, their hypothesis can explain why yeast mutants, including large deletions and insertions, show parity in frequency of conversion to wild type and to mutant: they suggest that the duplex gap is much enlarged, so that most conversion in yeast results from gap repair rather than mismatch correction. Parity would arise if there was an equal chance of a chromatid of either parentage suffering a duplex break. The hypothesis also explains why recombination initiation sites function as a recipient of genetic information from the other recombining chromatid rather than as a donor of information to it. There is evidence for this from three sources: the M26 mutant in Schizosaccharomyces pombe ${ }^{8}$, cog in Neurospora crassa ${ }^{9}$ and YS17 in Sordaria brevicollis ${ }^{10}$ (for review see ref.11).

For many years Stahl ${ }^{12}$ has believed that conversion in yeast arises by local DNA synthesis not triggered by mismatched bases. The duplex-break repair model ${ }^{2}$, by combining this hypothesis with that of mismatch correction, surmounts the objections ${ }^{13}$ to Stahl's hypothesis but at the price of a model that will be difficult to test. There are two reasons for this. In the first place, many of its predictions are the same as those of the Meselson-Radding model ${ }^{7}$, some aspects of which already have substantial support ${ }^{11,14}$. Second, the
patterns of polarity in recombination within eukaryotic genes have led to the conclusion that recombination is normally initiated outside the genes. The postulated duplex breaks are therefore expected to occur in regions lacking genetic markers. Szostak et al. ${ }^{2}$ suggest that a direct search be made for double-strand breaks arising during the period of commitment to meiotic recombination.

Harold L.K. Whitehouse is at the Botany School, University of Cambridge, Downing Street, Cambridge CB2 3GA.

1. Resnick, M. \& Martin, P. Molec. gen. Genet. 143, 119 (1976).
2. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. \& Stahl, F.W. Cell 33, 25 (1983).
3. Orr-Weaver, T.L., Szostak, J.W. \& Rothstein, R.J. Proc. natn. Acad. Sci. U.S.A. 78, 6354 (1981).
4. Prakash, S., Prakash, L., Burke, W. \& Montelone, B Genetics 91, 31 (1980).
5. Game, J., Zamb, T., Braun, R., Resnick, M. \& Roth, R. Genetics 91, 51 (1980).
6. Orr-Weaver, T.L. \& Szostak, J.W. Proc. natn. Acad. Sci U.S.A. 80, 4417 (1983).
7. Meselson, M. \& Radding, C. Proc. natn. Acad. Sci. U.S.A. 72, 358 (1975).
8. Gutz, H. Genetics 69, 317 (1971).
9. Catcheside, D.G. The Genetics of Recombination (Arnold, London, 1977).
10. MacDonald, M.V. \& Whitehouse, H.L.K. Genet. Res. 34 87 (1979); Genet. Res. 41, 155 (1983).
11. Whitehouse, H.L.K. Genetic Recombination: understanding the mechanisms (Wiley, Chichester \& New York, 1982).
12. Stahl, F.W. Genetics 61, Suppl. I (1969); Genetic Recombination: thinking about it in Phage and Fungi (Freeman, San Francisco, 1979).
13. Holliday, R. \& Whitehouse, H.L.K. Molec. gen, Genet 107 85 (1970).
14. Paquette, N. \& Rossignol, J.-L. Molec. gen. Genet. 163, 313 (1978).

Astronomy

IRAS circulars 4 \& 5

The source name consists of four parts: (1) the letters 'IRAS' to indicate the origin; (2) the right ascension (RA) in hours and minutes, seconds omitted; (3) declination (Dec) in decimal degrees, multiplied by 10 and then truncated (thus $+32^{\circ} 42.3$ becomes +327); (4) an appendix starting with ' P ' and followed by the number of the circular; this appendix stresses that the data are preliminary. Position is given at Equinox 1950.0 .

Source IRAS	$\begin{gathered} \mathrm{RA}(1950) \\ \mathrm{h} \min \mathrm{~s} \end{gathered}$	Dec (1950) deg are min	Flux density (Jy)			$100 \mu \mathrm{~m}$	Source IRAS	RA (1950) h mins	Dec (1950) deg arc min	Flux density (Jy)			
			$12 \mu \mathrm{~m}$	$24 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$					$12 \mu \mathrm{~m}$	$25 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$
1608-185P04	160838	-18 30.7	8.7	15	22	22	$1650+024 \mathrm{P} 04$	165028	+02 29.0	0.51	3.7	26	34
$1623+030 \mathrm{P} 04$	162333	+03 01.2	<0.2	0.66	3.8	5.5	$1651+305 \mathrm{P} 04$	165141	+3031.0	<0.2	<0.3	1.9	4.1
$1624+116 \mathrm{P} 04$	162425	+1141.5	<0.3	<0.4	2.6	7.2	1700-234P04	170040	-23 28.6	4.8	6.6	1.9	<3
$1626+037$ P04	162613	+03 43.4	<0.2	<0.3	2.2	3.6	1705-022P04	170533	-02 16.5	6.6	6.1	1.2	<2
$1627+031$ P04	162749	+03 07.4	<0.2	<0.3	1.7	2.5	1709-165P04	170922	-16 33.5	8.7	7.8	0.99	<3
$1628+041$ P04	162827	+04 11.4	<0.3	0.99	7.8	16	1710-032P04	171014	-03 12.5	<0.3	1.5	3.0	<2
1639-096P04	163956	-09 37.6	<0.4	1.1	8.7	16	1713-102P04	171350	-10 17.5	0.57	2.2	19	31
1640-188P04	164058	-1851.7	<0.2	4.4	4.2	<3	1717-087P04	171709	-0844.0	38	34	6.0	<3
$1645+033 \mathrm{P} 04$	164528	+03 23.5	<0.2	<0.3	2.2	3.5	$1718+113 \mathrm{P} 04$	171802	+1122.0	<0.2	0.40	2.3	3.7
1647-113P04	164737	-1122.9	1.6	5.2	2.7	<4	$1720+129 \mathrm{P} 04$	172049	+1257.1	<0.4	<0.2	1.9	3.2

Source	RA (1950)	$50)$	Flux density (Jy)				Source	RA (1950)h min s	Dec (1950) deg arc min	Flux density (Jy)			
IRAS	h min s	deg are min	$12 \mu \mathrm{~m}$	$25 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$	IRAS			$12 \mu \mathrm{~m}$	$25 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$
0441+727P05	044152	+72 46.2	<0.3	1.2	4.6	6.8	0531-219P05	053113	-21 58.8	0.42	0.77	9.7	32
0449+781P05	044944	+78 06.6	<0.6	0.64	6.6	12	$0533+541$ P05	053345	+5408.0	<0.2	0.49	5.4	8.3
0506+536P05	050607	+53 38.7	0.34	1.7	9.4	16	0536+467P05	053609	+46 44.2	170	200	77	34
0507+471P05	050700	+4707.0	0.58	3.0	17	38	0538-220P05	053806	-22 01.7	<0.2	<0.2	2.1	4.2
0507+528P05	050719	+52 48.9	200	290	69	32	0540-240P05	054057	-24 05.2	<0.3	0.52	2.8	4.4
0508+796P05	050816	+79 36.7	<0.3	0.62	6.0	11	0541 + 586P05	054124	+58 40.8	0.60	0.87	16	40
$0512+531$ P05	051252	+53 08.2	<0.4	0.67	3.3	6.6	0547-303P05	054747	-30 18.7	<0.2	<0.3	3.7	8.3
$0512+514 \mathrm{P} 05$	051259	+5128.7	<0.3	1.0	7.2	9.0	0552-327P05	055201	-32 45.1	<0.2	<0.4	1.8	4.2
$0513+581$ P05	051328	+5811.1	<0.3	0.47	5.2	13	$0600+477 \mathrm{P} 05$	060022	+47 47.9	34	31	5.1	<10
0516+432P05	051639	+4315.3	0.33	0.79	6.3	11	$0610+668 \mathrm{P} 05$	061039	+6651.2	<0.3	<0.4	3.8	8.6
0517+428P05	051717	+42 49.8	0.58	0.73	4.5	14	$0623+744 \mathrm{P} 05$	062357	+7428.6	<0.2	0.88	5.4	8.3
$0522+416 \mathrm{P} 05$	052207	+4139.2	2.6	18	140	190	$0705+719 \mathrm{P} 05$	070532	+7155.0	<0.2	<0.3	2.4	6.1
							$0706+718 \mathrm{P} 05$	070645	+7150.0	<0.4	0.42	4.1	10

