Abstract
Of today's great ice sheets, the West Antarctic Ice Sheet poses the most immediate threat of a large sea-level rise, owing to its potential instability. Complete release of its ice to the ocean would raise global mean sea level by four to six metres, causing major coastal flooding worldwide. Human-induced climate change may play a significant role in controlling the long-term stability of the West Antarctic Ice Sheet and in determining its contribution to sea-level change in the near future.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The configuration of Northern Hemisphere ice sheets through the Quaternary
Nature Communications Open Access 16 August 2019
-
Pricing Carbon and Adjusting Capital to Fend Off Climate Catastrophes
Environmental and Resource Economics Open Access 26 February 2018
-
Assembly processes of moss and lichen community with snow melting at the coastal region of the Barton Peninsula, maritime Antarctic
Journal of Ecology and Environment Open Access 24 October 2016
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Mercer, J. H. Antarctic ice and Sangamon Sea level. Int. Assoc. Sci. Hydrol. Symp. 79, 217–225 (1968).
Revelle, R. R. in Changing Climate 441–448 (National Academy Press, Washington DC, (1983)).
Bentley, C. R. The West Antarctic ice sheet: diagnosis and prognosis. Proc. Carbon Dioxide Research Conf. USA (NTIS, Springfield, VA, (1982)).
Intergovernmental Panel on Climate Change Climate Change 1995: The Science of Climate Change (eds Houghton, J. T.et al.) 359–405 (Cambridge Univ. Press, (1996)).
Rodhe, H. in Global Biogeochemical Cycles (eds Butcher, S. S., Charlson, R. G., Orians, G. H. & Wolfe, G. V.) 55–72 (Academic, London, (1992)).
Bentley, C. R. in Geology of Antarctica (ed. Tinguey, R. J.) 335–364 (Oxford Univ. Press, (1991)).
Hughes, T. Is the West Antarctic ice sheet disintegrating? J. Geophys. Res. 78, 7884–7910 (1973).
Thomas, R. H. & Bentley, C. R. Amodel for Holocene retreat of the West Antarctic ice sheet. Quat. Res. 10, 150–170 (1978).
Denton, G. H. et al. Late Wisconsin and early Holocene glacial history, inner Ross embayment, Antarctica. Quat. Res. 31, 151–182 (1989).
Thomas, R. H. Ice shelves: a review. J. Geophys. Res. 24, 273–286 (1979).
Kellogg, T. B. & Kellogg, D. E. Recent glacial history and rapid ice stream retreat in the Amundsen sea. J. Geophys. Res. 92, 8859–8864 (1987).
Shipp, J. et al. High- to intermediate-resolution seismic stratigraphic analysis of mid–late-Miocene to Pleistocene strata in eastern Ross sea: implications for changing glacial/climatic regime. Terra Antarctica 1, 381–384 (1994).
Anderson, J. B. & Bartek, L. R. Cenozoic glacial history of the Ross sea revealed by intermediate resolution seismic reflection data combined with drill site information. Antarctic Res. Ser. 56, 231–263 (1992).
Kennett, J. P. & Barker, P. F. Proc. Ocean Drilling Prog. 113, 937–960 (1990).
Kennett, J. P. & Hodell, D. A. Evidence for relative climatic stability of Antarctica during the early Pliocene: a marine perspective. Geografiska Annaler 75 A, 205–220 (1993).
Warnke, D. . A., Bonnie, M. & Hodell, D. A. Major deglaciation of East Antarctica during the late Pliocene? Not likely from a marine perspective. Mar. Micropaleon. 27, 237–251 (1996).
Scherer, R. P. Quaternary and tertiary microfossils from beneath ice stream B: evidence for adynamicWest Antarctic ice sheet history. Paleogeogr. Paleoclimatol. Paleoecol. 90, 395–412 (1991).
Burckle, L. H. Is there direct evidence for late quaternary collapse of the West Antarctic ice sheet? J. Glaciol. 39, 491–494 (1993).
Stuiver, M. et al. in The Last Great Ice Sheets (eds Denton, G. H. & Hughes, T. J.) 319–426 (Wiley-Interscience, New York, (1981)).
Anderson, J. B. et al. Evidence for a grounded ice sheet on the Ross sea continental shelf during thelate Pleistocene and preliminary paleodrainage reconstruction. Antarctic Res. Ser. 57, 39–62 (1992).
Hindmarsh, R. C. A. in Ice in the Climate System (ed. Peltier, W. R.) 1, 67–99 (Springer, Berlin, (1993)).
Lambeck, K. & Nakada, M. Constraints on the age and duration of the last interglacial period and on sea level variations. Nature 357, 125–128 (1992).
Howard, W. R. Awarm future in the past. Nature 388, 418–419 (1997).
Neumann, A. C. & Hearty, P. J. Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 24, 775–778 (1996).
Jacobs, S. S. Is the Antarctic ice sheet growing? Nature 360, 29–33 (1992).
Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).
Thomas, R. H., Sanderson, T. J. O. & Rose, K. E. Effect of climatic warming on the West Antarctic ice sheet. Nature 277, 355–358 (1979).
Jacobs, S. S. et al. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38, 375–387 (1992).
Bentley, C. R. Antarctic ice streams: a review. J. Geophys. Res. 92, 8843–8858 (1987).
Shabtaie, S., Whillans, I. M. & Bentley, C. R. The morphology of ice streams A, B, and C, West Antarctica, and their environs. J. Geophys. Res. 92, 8865–8883 (1987).
Bindschadler, R. A. & Scambos, T. A. Satellite-image-derived velocity field of an Antarctic ice stream. Science 252, 242–246 (1991).
Bindschadler, R. & Vornberger, P. Changes in the West Antarctic ice sheet since 1963 from declassified satellite photography. Science 279, 689–692 (1998).
Englehardt, H. et al. Physical conditions at the base of a fast moving Antarctic ice stream. Science 248, 57–59 (1990).
Shabtaie, S. & Bentley, C. R. West Antarctic ice streams draining into the Ross ice shelf: configuration and mass balance. J. Geophys. Res. 92, 1311–1336 (1987).
Whillans, I. M., Bolzan, J. & Shabtaie, S. Velocity of ice streams B and C, Antarctica. J. Geophys. Res. 92, 8895–8902 (1987).
Bindschadler, R. Actively surging West Antarctic ice streams and their response characteristics. Ann. Glaciol. 24, 409–414 (1997).
Blankenship, D. D. et al. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322, 54–57 (1986).
Alley, R. B. et al. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).
Blankenship, D. D. et al. Till beneath ice stream B. 1. Properties derived from seismic travel times. J. Geophys. Res. 92, 8903–8911 (1987).
Alley, R. B. et al. Till beneath ice stream B. 4. A coupled ice-till flow model. J. Geophys. Res. 92, 8931–8940 (1987).
Kamb, B. & Englehardt, H. in Proc. of the International Symposium held at St. Petersburg, September 1990 (1AHS Pub. No. 208, 145–154, (1991)).
Anandakrishnan, S. et al. Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature (in the press).
MacAyeal, D. R. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res. 94, 4071–4087 (1989).
Alley, R. B. In search of ice-stream sticky spots. J. Glaciol. 39, 447–454 (1993).
Echelmeyer, K. A. et al. The role of the margins in the dynamics of an active ice stream. J. Glaciol. 40, 527–538 (1994).
Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).
Doake, C. S. M. et al. Glaciological studies on Rutford ice stream, Antarctica. J. Geophys. Res. 92, 8951–8960 (1987).
Jenkins, A. & Doake, C. S. M. Ice-ocean interaction on Ronne ice shelf, Antarctica. J. Geophys. Res. 96, 791–813 (1991).
Smith, A. M. Basal conditions on Rutford ice stream West Antarctica, from seismic observations. J. Geophys. Res. 102, 543–552 (1997).
Crabtree, R. D. & Doake, C. S. M. Pine island glacier and its drainage basin: results from radio-echo sounding. Ann. Glaciol. 3, 65–70 (1982).
Lucchitta, B. K. et al. Antarctic glacier-tongue velocities from Landsat images: first results. Ann. Glaciol. 17, 356–366 (1993).
Lucchitta, B. K., Rosanova, C. E. & Mullins, K. F. Velocities of Pine island glacier, West Antarctica, from ERS-1 SAR images. Ann. Glaciol. 21, 277–283 (1995).
Jenkins, A. et al. Glaciological and oceanographic evidence of high melt rates beneath Pine island glacier, West Antarctica. J. Glaciol. 43, 114–121 (1997).
Thomas, R. H. The dynamics of marine ice sheets. J. Glaciol. 24, 167–177 (1979).
Thomas, R. H. The creep of ice shelves: interpretation of observed behaviour. J. Glaciol. 12, 55–70 (1973).
Mercer, J. H. West Antarctic ice sheet and CO2greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).
Lingle, C. S. Anumerical model of interactions between a polar ice stream and the ocean: application to ice stream E. West Antarctica. J. Geophys. Res. 89, 3523–3549 (1984).
Doake, C. S. M. & Vaughan, D. G. Rapid disintegration of the Wordie ice shelf in response to atmospheric warming. Nature 350, 328–330 (1991).
Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of northern Larsen ice shelf, Antarctica. Science 271, 788–792 (1996).
Vaughan, D. G. & Doake, C. S. M. Recent atmospheric warming and retreat of ice shelves on the Antarctic peninsula. Nature 379, 328–331 (1996).
Vaughan, D. G. Implications of the break-up of Wordie ice shelf, Antarctica, for sea level. Antarctic Sci. 5, 403–408 (1993).
Doake, C. S. M. et al. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778–780 (1998).
Ohmura, A., Wyld, M. & Bengtsson, L. Apossible change in mass balance of Greenland and Antarctic ice sheets in the coming century. J. Clim. 9, 2129–2135 (1996).
Hughes, T. The stability of the West Antarctic ice sheet: what has happened and what will happen. Proc. Carbon Dioxide Res. Conf. USA 1982 (NTIS, Springfield, VA, (1982)).
Nicholls, K. W. Predicted reduction in basal melt rates of an Antarctic ice shelf in a warmer climate. Nature 388, 480–482 (1997).
Weertman, J. The stability of ice-age ice sheets. J. Geophys. Res. 66, 3783–3792 (1961).
Nye, J. F. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. Lond. A 256, 559–584 (1960).
Hollin, J. T. On the glacial history of Antarctica. J. Glaciol. 4, 173–195 (1962).
Robin, G. deQ. & Adie, R. J. in Antarctic Research (eds Priestley, E., Adie, R. J. & Robin, G. deQ.) 100–117 (Butterworths, London, (1964)).
Hughes, T. West Antarctic ice streams. Rev. Geophys. Space Sci. 15, 1–46 (1977).
Shabtaie, S., Bindschadler, R. . A. & MacAyeal, D. R. Mass-balance studies of ice streams A, B, and C, West Antarctica, and possible surging behavior of ice stream B. Ann. Glaciol. 11, 137–149 (1988).
Lingle, C. S. & Brown, T. J. in Dynamics of the West Antarctic Ice Sheet (eds van derVeen, C. J. & Oerlemans, J.) 249–285 (Reidel, Dordrecht, The Netherlands, (1987)).
Weertman, J. Glaciology's grand unsolved problem. Nature 260, 284–286 (1976).
Bentley, C. R. Rapid sea-level rise soon from West Antarctic ice sheet collapse? Science 275, 1077–1078 (1997).
Alley, R. B. & Whillans, I. M. Changes in the West Antarctic ice sheet. Science 254, 959–963 (1991).
van der Veen, C. J. Response of a marine ice sheet to changes at the grounding line. Quat. Res. 24, 257–267 (1985).
Herterich, K. in Dynamics of the West Antarctic Ice Sheet (eds van der Veen, C. J. & Oerlemans, J.) 185–202 (Reidel, Dordrecht, The Netherlands, (1987)).
Huybrechts, P. The Antarctic ice sheet during the last glacial-interglacial cycle: a three-dimensional experiment. Ann. Glaciol. 14, 115–119 (1990).
Barcilon, V. & MacAyeal, D. R. Steady flow of a viscous ice stream across a no-slip/free-slip transition at the bed. J. Glaciol. 39, 167–185 (1993).
Van der Veen, C. J. & Whillans, I. M. Model experiments on the evolution and stability of ice streams. Ann. Glaciol. 23, 129–137 (1996).
MacAyeal, D. R. Irregular oscillations of the West Antarctic ice sheet. Nature 359, 29–32 (1992).
MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the north Atlantic's Heinrich events. J. Paleoceanogr. 8, 775–784 (1993).
Greve, R. & MacAyeal, D. R. Dynamic/thermodynamic simulations of Laurentide ice-sheet instability. Ann. Glaciol. 3, 328–335 (1996).
Verbitsky, M. Y. & Oglesby, R. J. The CO2-induced thickening/thinning of the Greenland and Antarctic ice sheets as simulated by a GCM (CCM1) and an ice-sheet model. Clim. Dynam. 11, 247–253 (1995).
Fastook, J. L. & Prentice, M. Afinite-element model of Antarctica: sensitivity test for meteorological mass-balance relationship. J. Glaciol. 40, 167–175 (1994).
Lingle, C. S. in Glaciers, Ice Sheets and Sea Level: Effect of a CO2-Induced Climate Change 317–330 (US Dept of Energy, Washington DC, (1985)).
Thomas, R. H. in Glaciers, Ice Sheets and Sea Level: Effect of a CO2-Induced Climate Change 301–316 (US Dept of Energy, Washington DC, (1985)).
Huybrechts, P. & Oerlemans, J. Response of the Antarctic ice sheet to future greenhouse warming. Clim. Dynam. 5, 93–102 (1990).
Budd, W. F., Jenssen, D., Mavrakis, E. & Coutts, B. Modelling the Antarctic ice-sheet changes through time. Ann. Glaciol. 20, 291–297 (1994).
Anandakrishnan, S. & Alley, R. B. Tidal forcing of basin seismicity of ice stream C, West Antarctica, observed far inland. J. Geophys. Res. 102, 15183–15196 (1997).
Alley, R. B. & MacAyeal, D. R. West Antarctic ice sheet collapse: chimera or clear danger? Antarc. J.-Rev. 1993 59–60 (1993).
Budd, W. F. & Smith, I. N. in Glaciers, Ice Sheets and Sea Level: Effect of a CO2-Induced Climate Change 172–177 (US Dept of Energy, Washington DC, (1985)).
Bentley, C. R. & Giovinetto, M. B. in International Conference on the Role of the Polar Regions inGlobalChange: Proceedings of a Conference Held June 11–15, 1990 at University of Alaska, Fairbanks (eds Weller, G., Wilson, C. L. & Serverin, B. A. B.) 481–488 (Univ. of Alaska, Fairbanks, (1991)).
Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic ice sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).
Nichols, K. W., Makinson, K. & Johnson, M. R. New oceanographic data from beneath Ronne ice shelf, Antarctica. Geophys. Res. Lett. 24, 167–170 (1997).
Intergovernmental Panel on Climate Change Climate Change 1995: The Science of Climate Change (eds Houghton, J. T.et al.) 9–49 (Cambridge Univ. Press, (1996)).
Intergovernmental Panel on Climate Change Climate Change 1995: The Science of Climate Change (eds Houghton, J. T.et al.) 133–192 (Cambridge Univ. Press, (1996)).
King, J. C. Recent climate variability in the vicinity of the Antarctic peninsula. Int. J. Climatol. 14, 357–369 (1994).
Mosley-Thompson, E. et al. Recent increase in South Pole snow accumulation. Ann. Glaciol. 21, 131–138 (1995).
Jouzel, J. Climatic information over the last century deduced from a detailed isotopic record in the South Pole snow. J. Geophys. Res. 88, 2693–2703 (1993).
Mosley-Thompson, E. in Climate since A.D. 1500 (eds Bradley, R. S. & Jones, P. D.) 572–591 (Routledge, New York, (1992)).
Isaksson, E. et al. Acentury of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res. 101, 7085–7094 (1992).
Peel, D. A. in Climate since A.D. 1500 (eds Bradley, R. S. & Jones, P. D.) 549–571 (Routledge, New York, (1992)).
Jacka, T. H. & Budd, W. F. in International Conference on the Role fo the Polar Regions in GlobalChange: Proceedings of a Conference held June 11–15, 1990 at University of Alaska, Fairbanks (eds Weller, G., Wilson, C. L. & Serverin, B. A. B.) 63–70 (Univ. of Alaska, Fairbanks, (1991)).
de la Mare, W. K. Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature 389, 57–59 (1997).
Cavalieri, D. J. et al. Observed hemispheric asymmetry in global sea ice changes. Science 278, 1104–1106 (1997).
Robin, G. deQ. Ice cores and climate change. Phil. Trans. R. Soc. Lond. B 280, 143–168 (1977).
Lorius, C. et al. A150,000-year climatic record from Antarctic ice. Nature 316, 591–595 (1985).
Thompson, S. L. & Pollard, D. Greenland and Antarctic mass balances for present and doubled atmospheric CO2from the GENESIS version-2 global climate model. J. Am. Meteorol. Soc. 10, 871–900 (1997).
Kapsner, W. R. et al. Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature 373, 52–54 (1995).
Bromwich, D. Ice sheets and sea level. Nature 373, 18–19 (1995).
Huybrechts, P. Formation and disintegration of the Antarctic ice sheet. Ann. Glaciol. 20, 336–340 (1994).
Haywood, J. M. et al. Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophys. Res. Lett. 24, 1335–1338 (1997).
Manabe, S. & Stouffer, R. J. Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate 7, 5–23 (1994).
Murphy, J. M. & Mitchell, J. F. B. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part II: spatial and temporal structure of response. J. Clim. 8, 57–80 (1995).
Hellmer, H. H., Jacobs, S. S. & Jenkins, A. Oceanic erosion of a floating Antarctic glacier in the Amundsen sea. Antarctic Res. Ser. 75, (in the press).
MacAyeal, D. R. Thermohaline circulation below the Ross ice shelf: a consequence of tidally induced vertical mixing and basal melting. J. Geophys. Res. 89, 597–606 (1984).
Grosfeld, K., Gerdes, R. & Determann, J. Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. J. Geophys. Res. 102, 15595–15610 (1997).
Budd, W. F. & Simmonds, I. in International Conference on the Role of the Polar Regions in GlobalChange: Proceedings of a Conference held June 11–15, 1990 at University of Alaska, Fairbanks (eds Weller, G., Wilson, C. L. & Serverin, B. A. B.) 489–494 (Univ. of Alaska, Fairbanks, (1991)).
Gregory, J. M. & Oerlemans, J. Sea-level rise from glacier melt over the next century. Nature 391, 474–476 (1998).
Antarctica: Glaciological and Geophysical Folio (ed. Drewry, D. J.) sheets 3 and 4 (Scott Polar Research Institute, Cambridge, UK, (1983)).
Bindschadler, R., Vornberger, P. L. & Shabtaie, S. The detailed net mass balance of the ice plain on IceStream B. Antarctica: a geographic information system approach. J. Glaciol. 39, 471–482 (1993).
Acknowledgements
I thank R. Alley, R. Bindschadler, C. Bentley, R. Hindmarsh, P.Huybrechts, S. Jacobs, A. Jenkins, C.Raymond and I. Whillans for their comments on drafts of this manuscript. R. J. Stouffer and J. F. B. Mitchell kindly provided data in advance of publication.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Oppenheimer, M. Global warming and the stability of the West Antarctic Ice Sheet. Nature 393, 325–332 (1998). https://doi.org/10.1038/30661
Issue Date:
DOI: https://doi.org/10.1038/30661
This article is cited by
-
Measurement of ice flow velocities from GPS positions logged by short-period seismographs in East Antarctica
Science China Earth Sciences (2021)
-
The configuration of Northern Hemisphere ice sheets through the Quaternary
Nature Communications (2019)
-
Pricing Carbon and Adjusting Capital to Fend Off Climate Catastrophes
Environmental and Resource Economics (2019)
-
Change in future climate due to Antarctic meltwater
Nature (2018)
-
Assembly processes of moss and lichen community with snow melting at the coastal region of the Barton Peninsula, maritime Antarctic
Journal of Ecology and Environment (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.