Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diminished in vitro tyrosine kinase activity of the EGF receptor of senescent human fibroblasts

Abstract

Fibroblastic cultures derived from normal human tissues undergo a finite number of population doublings when serially subcultivated in vitro (see refs 1, 2 for reviews). Epidermal growth factor (EGF) serves as a mitogen for early doubling level cultures of the human fetal lung-derived cell strain, WI-38, under serum-free conditions3. The ability of cells from late doubling level cultures to respond mitogenically to EGF is lost, however, despite undiminished binding of EGF throughout the replicative lifespan3. The ultimate effects of EGF, that is DNA synthesis and mitosis (see ref. 4 for review), occur after a sequence of events initiated by binding of ligand to specific cellular receptors5,6. The receptor for EGF has been characterized as a 145,000–165,000 (145 K–165 K) molecular weight doublet7,8, and, like the receptors for platelet-derived growth factor9 and insulin10,11, and the transforming proteins of certain of the RNA tumour viruses12–17, is a tyrosine-specific protein kinase with autophosphorylating activity8,18,19. Moreover, several of the cellular target molecules of tyrosine phosphorylation have been found to be substrates for two or more of these kinases20,21. The hypothesis that tyrosine phosphorylation underlies a common mechanism of growth control prompted us to ask whether the loss of responsiveness to EGF by late doubling level WI-38 cells is accompanied by altered expression of the EGF receptor, and specifically whether changes occur in the ability of receptors from populations of cells of various in vitro ages to catalyse tyrosine autophosphorylation. We show here that autophosphorylating activity is absent from the EGF receptor of cells which have lost their mitogenic responsiveness to EGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayflick, L. Mech. Ageing Dev. 14, 59–79 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Cristofalo, V. J. & Stanulis-Praeger, B. M. in Advances in Cell Culture Vol. 2 (ed. Maramorosch, K.) 1–68 (Academic, New York, 1982).

    Google Scholar 

  3. Phillips, P. D., Kuhnle, E. & Cristofalo, V. J. J. Cell Physiol. 114, 311–316 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Carpenter, G. & Cohen, S. in Biochemical Actions of Hormones Vol. 5 (ed. Litwack, G.) 203–247 (New York, Academic, 1978).

    Book  Google Scholar 

  5. Carpenter, G. & Cohen, S. J. Cell Biol. 71, 159–171 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Das, M. et al. Proc. natn. Acad. Sci. U.S.A. 74, 2790–2794 (1977).

    Article  ADS  CAS  Google Scholar 

  7. King, L. E., Carpenter, G. & Cohen, S. Biochemistry 19, 1524–1528 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Carlin, C. R. & Knowles, B. B. Proc. natn. Acad. Sci. U.S.A. 79, 5026–5030 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Ek, B., Westermark, B., Wasteson, A. & Heldin, C.-H. Nature 295, 419–420 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Petruzzelli, L. M. et al. Proc. natn. Acad. Sci. U.S.A. 79, 6792–6796 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Roth, R. A. & Cassell, D. J. Science 219, 299–301 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hunter, T. & Sefton, B. M. Proc. natn. Acad. Sci. U.S.A. 77, 1311–1315 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Collett, M. S., Purchio, A. F. & Erikson, R. L. Nature 285, 167–169 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Sefton, B. M., Hunter, T. & Raschke, W. C. Proc. natn. Acad. Sci. U.S.A. 78, 1552–1556 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Witte, O. N., Dasgupta, A. & Baltimore, D. Nature 271, 375–377 (1980).

    Google Scholar 

  16. Pawson, T. et al. Cell 22, 767–775 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Cooper, J. A. & Hunter, T. J. molec. cell. Biol. 1, 165–178 (1981).

    Article  CAS  Google Scholar 

  18. Carpenter, G., Lembach, K. J., Morrison, M. & Cohen, S. J. biol. Chem. 250, 4297–4305 (1978).

    Google Scholar 

  19. Ushiro, H. & Cohen, S. J. biol. Chem. 255, 8363–8365 (1980).

    CAS  PubMed  Google Scholar 

  20. Erikson, E., Shealy, D. J. & Erikson, R. L. J. biol. Chem. 256, 11381–11384 (1981).

    CAS  PubMed  Google Scholar 

  21. Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R. & Hunter, T. Cell 31, 263–273 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Cristofalo, V. J. & Charpentier, R. J. Tissue Culture Meth. 6, 117–122 (1980).

    Article  CAS  Google Scholar 

  23. Cristofalo, V. J. & Sharf, B. B. Expl. Cell Res. 76, 419–427 (1973).

    Article  CAS  Google Scholar 

  24. Phillips, P. D. & Cristofalo, V. J. J. Tissue Culture Meth. 6, 123–126 (1980).

    Article  Google Scholar 

  25. Phillips, P. D. & Cristofalo, V. J. Expl. Cell Res. 134, 297–302 (1981).

    Article  CAS  Google Scholar 

  26. Hynes, R. O. Proc. natn. Acad. Sci. U.S.A. 70, 3170–3174 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Witte, O. N., Goff, S., Rosenberg, N. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 77, 4993–4997 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Rosenberg, N., Clark, D. R. & Witte, O. N. J. Virol. 36, 766–774 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Snyder, M. A., Bishop, J. M., Colby, W. W. & Levinson, A. D. Cell 32, 891–901 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Schreiber, A. B., Libermann, T. A., Lax, L., Yarden, Y. & Schlessinger, J. J. biol. Chem. 258, 846–853 (1983).

    CAS  PubMed  Google Scholar 

  31. Cassel, D., Pike, L. J., Grant, G. A., Krebs, E. G. & Glaser, L. J. biol. Chem. 258, 2945–2950 (1983).

    CAS  PubMed  Google Scholar 

  32. Gross, J. L., Krupp, M. N., Rifkin, D. B. & Lane, M. D. Proc. natn. Acad. Sci. U.S.A. 80, 2276–2280 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Cohen, S., Ushiro, H., Stoscheck, C. & Chinkers, M. J. biol. Chem. 257, 1523–1531 (1982).

    CAS  PubMed  Google Scholar 

  34. McKeehan, W. L., McKeehan, K. A., Hammond, S. L. & Ham, R. G. In Vitro 13, 399–416 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Scatchard, G. Ann. N. Y. Acad. Sci. 51, 660–672 (1949).

    Article  ADS  CAS  Google Scholar 

  36. Croce, C. M. & Koprowski, H. J. exp. Med. 140, 1221–1229 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aden, D. P. & Knowles, B. B. Immunogenetics 3, 209–221 (1976).

    Article  Google Scholar 

  38. Knowles, B. B. et al. J. exp. Med. 145, 314–326 (1977).

    Article  CAS  PubMed  Google Scholar 

  39. Goldstein, L. T., Klinman, N. R. & Manson, L. A. J. natn. Cancer Inst. 51, 1713–1715, (1973).

    Article  CAS  Google Scholar 

  40. Fabricant, R. N., DeLarco, J. E. & Todaro, G. J. Proc. natn. Acad. Sci. U.S.A. 74, 565–569, (1977).

    Article  ADS  CAS  Google Scholar 

  41. Ford, S. R., Aden, D. P., Mausner, R., Trinchieri, G. & Knowles, B. B. Immunogenetics, 6, 293–300 (1978).

    Article  CAS  Google Scholar 

  42. Cullen, S. E. & Schwartz, B. D. J. Immun. 117, 136–142 (1976).

    CAS  PubMed  Google Scholar 

  43. Beemon, K. & Hunter, T. J. Virol. 28, 551–566 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. O'Tarrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlin, C., Phillips, P., Knowles, B. et al. Diminished in vitro tyrosine kinase activity of the EGF receptor of senescent human fibroblasts. Nature 306, 617–620 (1983). https://doi.org/10.1038/306617a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306617a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing