Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatic recognition between superoxide and copper, zinc superoxide dismutase

Abstract

Electrostatic forces have been implicated in a variety of biologically important molecular interactions including drug orientation by DNA1, protein folding2–3 and assembly4, substrate binding and catalysis5–7 and macromolecular complementarity with inhibitors, drugs and hormones8–11. To examine enzyme–substrate interactions in copper, zinc superoxide dismutase (SOD), we developed a method for the visualization and analysis of an enzyme's three-dimensional electrostatic vector field that allows the contributions of specific residues to be identified. We report here that the arrangement of electrostatic charges in SOD promotes productive enzyme–substrate interaction through substrate guidance and charge complementarity: sequence-conserved residues create an extensive electrostatic field that directs the negatively charged superoxide (O2) substrate to the highly positive catalytic binding site at the bottom of the active-site channel. Dissection of the electrostatic potential gradient indicated the relative contributions of individual charged residues: Lys 134 and Glu 131 seem to have important roles in directing the long-range approach of O2, while Arg 141 has local orienting effects. The reported methods of analysis may have general application for the elucidation of inter-molecular recognition processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dean, P. M. Br. J. Pharmac. 74, 39–46 (1981).

    Article  CAS  Google Scholar 

  2. Hol, W. G. J., Halie, L. M. & Sander, C. Nature 294, 532–536 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Sheridan, R. P., Levy, R. M. & Salemme, F. R. Proc. natn. Acad. Sci. U.S.A. 79, 4545–4549 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Perutz, M. F. Science 201, 1187–1191 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Hayes, D. M. & Kollman, P. A. J. Am. chem. Soc. 98, 7811–7816 (1976).

    Article  CAS  Google Scholar 

  6. Sheridan, R. P. & Allen, L. C. J. Am. chem. Soc. 103, 1544–1550 (1981).

    Article  CAS  Google Scholar 

  7. Warshel, A. & Levitt, M. J. molec. Biol. 103, 227–249 (1976).

    Article  CAS  Google Scholar 

  8. Blaney, J. M. et al. J. Am. chem. Soc. 104, 6424–6434 (1982).

    Article  CAS  Google Scholar 

  9. Weiner, P. K., Langridge, R., Blaney, J. M., Schaefer, R. & Kollman, P. A. Proc. natn. Acad. Sci. U.S.A. 79, 3754–3758 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Pullman, B., Lavery, R. & Pullman, A. Eur. J. Biochem. 124, 229–238 (1982).

    Article  CAS  Google Scholar 

  11. Friend, S. H., March, K. L., Hanania, G. I. H. & Gurd, F. R. N. Biochemistry 19, 3039–3047 (1980).

    Article  CAS  Google Scholar 

  12. Salin, M. L. & Wilson, W. W. Molec. cell. Biochem. 36, 157–161 (1981).

    Article  CAS  Google Scholar 

  13. Cudd, A. & Fridovich, I. J. biol. Chem. 257, 11443–11447 (1982).

    CAS  PubMed  Google Scholar 

  14. Koppenol, W. H. in Oxygen and Oxy-Radicals in Chemistry and Biology (eds Powers, E. L. & Rodgers, M. A. J.) 671–676 (Academic, New York, 1981).

    Google Scholar 

  15. Malinowski, D. P. & Fridovich, I. Biochemistry 18, 5905–5917 (1979).

    Google Scholar 

  16. Tainer, J. A., Getzoff, E. D., Richardson, J. S. & Richardson, D. C. Nature (this issue).

  17. Klug, D., Rabani, J. & Fridovich, I. J. biol. Chem. 247, 4839–4842 (1972).

    CAS  Google Scholar 

  18. Margerum, D. W., Cayley, G. R., Weatherburn, D. C. & Pagenkopf, G. K. in Coordination Chemistry Vol. 2 (ed. Martell, A. E.) 1–220 (American Chemical Society, Washington DC, 1978).

    Google Scholar 

  19. Hopfinger, A. J. in Conformational Properties of Macromolecules (eds Horecker, B., Kaplan, N. O., Marmur, J. & Scheraga, H. A.) 39 (Academic, New York, 1973).

    Google Scholar 

  20. Gelin, B. R. & Karplus, M. Biochemistry 18, 1256–1268 (1979).

    Article  CAS  Google Scholar 

  21. Dearing, A., Weiner, P. & Kollman, P. A. Nucleic Acids Res. 9, 1483–1497 (1981).

    Article  CAS  Google Scholar 

  22. Connolly, M. L. Science 221, 709–713 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Weiner, P. K. & Kollman, P. A. J. comp. Chem. 2, 287–303 (1981).

    Article  CAS  Google Scholar 

  24. Adams, D. J. Chem. phys. Lett. 62, 329–333 (1979).

    Article  ADS  CAS  Google Scholar 

  25. O'Donnell, T. J. & Olson, A. J. Computer Graphics 15, 133–142 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getzoff, E., Tainer, J., Weiner, P. et al. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 306, 287–290 (1983). https://doi.org/10.1038/306287a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306287a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing