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Snowflakes are far from simple 
Enough is known of the problem of how crystals grow to know that it will not 
be solved easily. But the outlines of an understanding are now apparent. 
IF science cannot explain the patterns in 
which snowflakes grow, why should its 
practitioners be trusted on more 
complicated matters, the safety of nuclear 
power stations, or the pill? That is a 
particular version of a common more 
general gibe whose underlying error is sheer 
ignorance. If the problem of the growth of 
crystals were anything but complicated, 
why would people such as the late F.C. 
Franck (who died last year) have spent a 
patient lifetime on the explanation of a few 
facets of the host of phenomena he 
described? Moreover, the reasons the 
problem of the ice crystal is complicated 
are interesting and important (as metal
lurgists worrying about the limitations of 
zone refining will confirm). And there is a 
little progress to report: the accompanying 
diagram, showing successive stages in the 
computer simulation of the growth of a 
dendritic crystal (in two dimensions) 
demonstrates both that the essence of the 
problem may be understood - and that 
there is still a long way to go. 

The problem of crystal growth is 
complicated for a very simple reason: it is a 
problem with nearly as many degrees of 
freedom as there are atoms or molecules on 
the growing surface. Moreover, the rate at 
which a crystal grows is determined not 
simply by the intrinsic properties of the 
material and of the phase (melt, solution or 
vapour) from which it is being formed but 
by an outwardly extraneous consideration 
- the rate at which the latent heat of 
solidification is removed from the surface. 

Qualitatively and crudely, an ice crystal 
growing from a saturated vapour will grow 
most quickly at those points on its surface 
where the latent heat escapes most quickly, 
which will be the places where the radius of 
curvature is the smallest. But for a growing 
snowflake, the radius of curvature is least, 
or the curvature is greatest, precisely where 
rapid growth has already taken place, at 
dendritic tips. So positive feedback or the 
Matthew principle ("To him that hath 
... ") applies, and dendritic growth as in a 
snowflake is a manifestation of instability. 
All this is elementary textbook stuff. 

The formal analysis of the problem is 
inevitably more complicated (but J.S. 
Langer has given a remarkably clear 
account of it in Rev.mod.Phys. 52, 1-28; 
1980). To calculate the shape in which a 
snowflake grows from a pure vapour is to 
calculate the time-dependent shape of a 
surface whose motion is determined by 
heat diffusion at all points, both inside the 
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surface and in the region outside it, at least 
up the boundaries of the heat sink at which 
the latent heat is absorbed and whose 
temperature must be less than the melting 
temperature 

On the face of things, this part of the 
problem merely requires that the 
temperature everywhere should satisfy the 
equations of thermal diffusion and that 
something should be said about the 
temperature at the interface. If that 
temperature were the melting temperature, 
there would be little difficulty. The snag is 
that the temperature will not be constant 
but, instead, depressed from the melting 
temperature by an amount that is a 
function of the curvature and of the sur
face tension (or of the free energy of 
material in the surface). This phenomenon 
is the again familiar textbook explanation 
of why, in clouds, water vapour can be 
cooled below ooc without condensing into 
ice crystals- vapour is stable with respect 
to very small ice crystals. 
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Mathematically, the dependence of the; 
interfacial temperature on the local 
curvature is an immense complication. 
Physically, these two effects of curvature 
are antagonistic at a growing dendritic tip. 
Curvature certainly increases the ease with 
which latent heat fans out from the 
dendritic surface but, by reducing the 
apparent melting temperature, it also 
flattens the temperature gradient and thus 
reduces the specific heat flux. But when the 
curvature is high, the second effect swamps 
the first, so that very fine dendritic tips,like 
flat surfaces, will lose heat (and thus grow) 
only slowly. And at some intermediate 
curvature, the rate of heat loss, and thus 
the speed at which the tip will grow, will be 
a maximum. 

That, too, would be good textbook 
material if there were some reason to 
believe that reality is as simple. But den
dritic tips do not grow indefinitely nor (as 

J.S. Langer points out) as quickly as the 
calculations suggest. Instead, as the shape 
of every snowflake shows, dendrites grow 
side branches behind the growing tip. The 
diagram is from a paper by R.C. Brower, 
D.A. Kessler, Joel Koplik and Herbert 
Levine (Phys.Rev.Lett. 51, 1111-1114; 
1983) whose chief purpose is to 
demonstrate the emergence of side
branched dendrites in a computer solution 
of the equations governing the process of 
solidification. Simple shapes (like the 
bulbous cross at the centre) are unstable 
relative to more complicated shapes, while 
the problem is non-linear. Rapid growth, 
as in the formation of a dendritic spur, en
tails a kind of controlled instability. Oddly, 
nobody has yet found a way of incor
porating the effects of crystal anisotropy 
(which must be why snowflakes have hex
agonal symmetry). 

So why not start at the other end of the 
problem, where growth is slow or even non
existent, by building in the lattice proper
ties of the solid? It should then be possible 
to tell the shapes that crystals take simply 
by minimizing the surface energy of some 
specified bulk of material. The snag here is 
that of calculating the surface tension or, 
which comes to the same thing, the excep
tional free energy of atoms or molecules in 
or near the surface. There has been some 
success with unrealistically simple models 
such as the Ising lattice - but now D.B. 
Abraham (Phys. Rev. Lett. 51, 1279-1281; 
1983) claims to have found a neat way of 
calculating surface energy by means of 
statistical argument based on the 
topological similarity between stepped ter
races on the surface of a growing crystal 
and the six-vertex lattice problem that 
crops up both in the calculation of ther
modynamic properties on a lattice and in 
the renormalization of the fields of quan
tum chromodynamics. 

Where all this will lead is anybody's 
guess. Both Abraham's calculation and 
that of Brower et al. are recipes for further 
work to do. But the importance and the 
ubiquity of the problem is not in doubt: a 
group from the Universite de Provence 
(Searby, G., et al. Phys. Rev. Lett. 51, 
1450-1453; 1983) has just described some 
neat observations of the stability of a plane 
flame front in a moving stream of com
bustible gas which demonstrate that to be 
analogous to the chemical stability of a 
zone-refining procedure except that 
hydrodynamic forces play the part of sur-
face tension. John Maddox 
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