Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of neuronal tissue from brain grafts with anti-Thy-1.1 antibody

Abstract

Grafting of neural tissue has been used to investigate the ability of central nervous system (CNS) axons to elongate into peripheral nerve grafts1,2; to investigate the growth characteristics of material transplanted within the CNS3,4; and to determine if grafts producing amines or peptides can replace a natural5,6 or experimentally induced depletion7,8 of these biogenic molecules. In such experiments donor tissue has been distinguished from host by injection into graft cells of horseradish peroxidase1,2 or radioactive leucine9 or by detecting biogenic molecules in the grafted tissue with antibodies6–8. All these methods have limitations and a technique which allows identification of the total neuronal cell output from transplanted tissue would be a powerful tool in delineating host–graft interactions. Polymorphic cell-surface antigens have not previously been exploited as markers. The Thy-1 antigen is an abundant glycoprotein of neurones and in the mouse exists in two allotypic forms called Thy-1.1 and Thy-1.2. We now show that tissue from Thy-1.1-positive animals grafted into Thy-1.1-negative brains can be clearly identified in cryostat sections using an anti-Thy-1.1 monoclonal antibody conjugated with peroxidase. We have used the method to study grafts from normal fetal mice which correct a developmental deficiency when transplanted into hpg mutant mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. David, S. & Aguayo, A. J. Science 214, 931–933 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Benfey, M. & Aguayo, A. J. Nature 296, 150–152 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Das, G. D., Hallas, B. H. & Das, K. G. Am. J. Anat. 158, 135–145 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. McLoon, L. K., Lund, R. D. & McLoon, S. C. J. comp. Neurol. 205, 179–189 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Gash, D., Sladek, J. R. Jr & Sladek, C. D. Science 210, 1367–1369 (1981).

    Article  ADS  Google Scholar 

  6. Krieger, D. T. et al. Nature 298, 468–471 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Björklund, A., Stenevi, U. & Svendgaard, N. A. Nature 262, 787–790 (1976).

    Article  ADS  PubMed  Google Scholar 

  8. Low, W. C. et al. Nature 300, 260–262 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jaeger, C. B. & Lund, R. D. Brain Res. 165, 338–342 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Reif, A. E. & Allen, J. M. Nature 209, 523 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Williams, A. F., Barclay, A. N., Letarte-Muirhead, M. & Morris, R. J. Cold Spring Harb. Symp. quant. Biol. 41, 51–61 (1976).

    Article  Google Scholar 

  12. Barclay, A. N. & Hydén, H. J. Neurochem. 31, 1375–1391 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Morris, R. J. & Raisman, G. J. Neurochem. 40, 637–644 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Beech, J. A., Morris, R. J. & Raisman, G. J. Neurochem. 41, 411–417 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Beale, R. & Osborne, N. N. Neurochem. Int. 4, 587–595 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, A. F. & Gagnon, J. Science 216, 696–703 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Mason, D. W. & Williams, A. F. Biochem. J. 187, 1–20 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ledbetter, J. A. & Herzenberg, L. A. Immun. Rev. 47, 63–90 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A. & Fink, G. Nature 269, 338–340 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Greene, H. S. N. Cancer Res. 11, 529–534 (1951).

    CAS  PubMed  Google Scholar 

  21. Barker, C. F. & Billingham, R. E. Adv. Immun. 25, 1–54 (1977).

    CAS  PubMed  Google Scholar 

  22. John, M., Carswell, E., Boyse, E. A. & Alexander, G. Nature new Biol. 238, 57–58 (1972).

    Article  CAS  PubMed  Google Scholar 

  23. Björklund, A., Stenevi, U., Dunnett, S. B. & Gage, F. H. Nature 298, 652–654 (1982).

    Article  ADS  PubMed  Google Scholar 

  24. Hsiung, L-M, Barclay, A. N., Brandon, M. R., Sim, E. & Porter, R. R. Biochem. J. 203, 293–298 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barclay, A. N. Immunology 42, 593–600 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlton, H., Barclay, A. & Williams, A. Detection of neuronal tissue from brain grafts with anti-Thy-1.1 antibody. Nature 305, 825–827 (1983). https://doi.org/10.1038/305825a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305825a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing