Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elevation of tubulin levels by microinjection suppresses new tubulin synthesis

Abstract

Most eukaryotic cells rapidly and specifically depress synthesis of α- and β-tubulin polypeptides in response to microtubule inhibitors which cause microtubule depolymerization and presumably increase the intracellular concentration of free sub-units1–4. Other drugs which interfere with microtubule function but which lead to a decrease in the subunit pool size have little effect on the rate of new tubulin synthesis1,2. These findings have previously been interpreted to indicate that cultured cells synthesize tubulin constitutively unless the subunit pool rises above a specified level. At this point an autoregulatory control mechanism is triggered which suppresses new tubulin synthesis through specific loss of tubulin mRNAs2,4. That tubulin RNA levels are dramatically lowered by microtubule depolymerizing drugs is unquestionably correct; that fluctuations in the depolymerized tubulin pool size are responsible for altered RNA levels rests, however, entirely on the presumptive effects of different microtubule drugs. This caveat is not trivial, as these drugs induce gross morphological alterations, and the specificities and detailed mechanisms of action of such drugs remain poorly understood. To investigate the effect of altered levels of tubulin subunits on the rate of new tubulin synthesis in mammalian cells, we have microinjected purified tubulin subunits into cells in culture and analysed the synthesized proteins. We report here that tubulin synthesis is rapidly and specifically suppressed by injection of an amount of tubulin roughly equivalent to 25–50% of the amount initially present in the cell, thus indicating the presence of an eukaryotic, autoregulatory control mechanism which specifies tubulin content in a cultured mammalian cell line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ben Ze'ev, A., Farmer, S. R. & Penman, S. Cell 17, 319–325 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Cleveland, D. W., Lopata, M. A., Sherline, P. & Kirschner, M. W. Cell 25, 537–546.

  3. Cleveland, D. W. & Kirschner, M. W. Cold Spring Harb. Symp. quant. Biol. 44, 171–183 (1982).

    Article  Google Scholar 

  4. Cleveland, D. W., Pittenger, M. F. & Lopata, M. A. J. submicrosc. Cytol. 15, 353–358 (1983).

    CAS  PubMed  Google Scholar 

  5. Weingarten, M. D., Lockwood, A. H., Hwo, S.-Y. & Kirschner, M. W. Proc. natn. Acad. Sci. USA 72, 1858–1862 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Hiller, G. & Weber, K. Cell 14, 795–804 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Spiegelman, B. M., Penningroth, S. M. & Kirschner, M. W. Cell 12, 587–595 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Olmsted, J. B. J. Cell Biol. 89, 418–423 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Graessmann, A., Graessmann, M. & Mueller, C. Meth. Enzym. 65, 816–825 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Stacey, D. W. & Allfrey, V. G. Cell 9, 729–737 (1976).

    Article  Google Scholar 

  11. Cleveland, D. W., Hwo, S.-Y. & Kirschner, M. W. J. molec. Biol. 116, 207–225 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Kirschner, M. W., Honig, L. & Williams, R. C. J. molec. Biol. 99, 263–276 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Shelanski, M. L., Gaskin, F. & Cantor, C. R. Proc. natn. Acad. Sci. U.S.A. 70, 765–768 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Wang, K., Feramisco, J. R. & Ash, J. F. Meth. Enzym. 85, 514–534 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. O'Farrell, P. O. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  17. Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleveland, D., Pittenger, M. & Feramisco, J. Elevation of tubulin levels by microinjection suppresses new tubulin synthesis. Nature 305, 738–740 (1983). https://doi.org/10.1038/305738a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305738a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing