Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A 5′-flanking sequence essential for progesterone regulation of an ovalbumin fusion gene

Abstract

Ovalbumin gene transcripts are not detectable in unstimulated chick oviducts but comprise about half of oviduct cell transcripts after steroid hormone induction1–3. This seems to result mostly from an increased level of transcription1–3. When steroid hormones enter the cytoplasm of target cells they bind to specific receptors and the steroid–receptor complex accumulates in the nucleus4,5. Presumably this complex then binds in a sequenceor conformation-specific way near the regulated gene and enhances transcription. Several recent studies have shown that steroid hormone receptors bind preferentially to the 5′-flanking region of steroid-responsive genes in vitro6–11. Transcription of cloned genes for α2u globulin12, growth hormone13,14, mouse mammary tumour virus15–19 and lysozyme20 can be induced in vivo by steroid hormones after transfer to cells containing steroid hormone receptors. In some of these studies, 5′-flanking regions were shown to be important for steroid regulation. We have now constructed a hybrid gene containing the ovalbumin gene promoter fused to the chicken adult β-globin gene and transferred it into primary cultures of chicken oviduct cells. We show that progesterone-mediated induction of transcription in untransformed oviduct cells depends on an ovalbumin gene flanking sequence between positions −95 and −222.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swaneck, G. E., Nordstrom, J. L., Kurezaler, F., Tsai, M.-J. & O'Malley, B. W. Proc. natn. Acad. Sci. U.S.A. 76, 1049–1053 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Chan, L., Means, A. R. & O'Malley, B. W. Proc. natn. Acad. Sci. U.S.A. 70, 1870–1874 (1973).

    Article  ADS  CAS  Google Scholar 

  3. McKnight, G. S. & Palmiter, R. D. J. biol. Chem. 254, 9050–9058 (1979).

    CAS  PubMed  Google Scholar 

  4. Jensen, E. V. et al. Proc. natn. Acad. Sci. U.S.A. 59, 632–638 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Schrader, W. T. et al. Rec. Prog. Horm. Res. 37, 583–663 (1981).

    CAS  PubMed  Google Scholar 

  6. Payvar, F. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6628–6632 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Govindan, M. V., Spiess, E. & Majors, J. Proc. natn. Acad. Sci. U.S.A. 79, 5157–5161 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Mulvihill, E. R., LePennec, J.-P. & Chambon, P. Cell 24, 621–632 (1982).

    Article  Google Scholar 

  9. Compton, J. G., Schrader, W. T. & O'Malley, B. W. Biochem. biophys. Res. Commun. 105, 96–104 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Pfal, M. Cell 31, 475–482 (1982).

    Article  Google Scholar 

  11. Compton, J. G., Schrader, W. T. & O'Malley, B. W. Proc. natn. Acad. Sci. U.S.A. 80, 16–20 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Kurtz, D. T. Nature 291, 629–631 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Robins, D. M., Paek, I., Seeburg, P. H. & Axel, R. Cell 29, 623–631 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Doehmer, J. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2268–2272 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Buetti, E. & Diggelmann, H. Cell 23, 335–343 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Hynes, N. E., Kennedy, N., Rahmsdorf, U. & Groner, B. Proc. natn. Acad. Sci. U.S.A. 78, 2038–2042 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Huang, A. L., Ostrowski, M. C., Bernard, D. & Hager, G. L. Cell 27, 245–255 (1982).

    Article  Google Scholar 

  18. Lee, F., Mulligan, R., Berg, P. & Ringold, G. Nature 294, 228–232 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ucker, D. S., Ross, S. R. & Yamamoto, K. R. Cell 27, 257–266 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Renkawitz, R. et al. Cell 31, 167–176 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Parker, B. A. & Stark, G. R. J. Virol. 31, 360–369 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Malek, L. T., Eschenfeldt, W. H., Munns, T. W. & Rhouds, R. E. Nucleic Acids Res. 9, 1657–1673 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dolan, M., Dodgson, J. B. & Engel, J. D. J. biol. Chem. 258, 3983–3990 (1983).

    CAS  PubMed  Google Scholar 

  24. Grez, M., Land, H., Giesecke, K. & Schutz, G. Cell 25, 743–752 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Davidson, E. H., Jacobs, H. T. & Britten, R. J. Nature 301, 468–470 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Knoll, B. J., Zarucki-Schultz, T., Dean, D. C. & O'Malley, B. W. Nucleic Acids Res. (in the press).

  27. Leisky, M. & Botchan, M. Nature 293, 79–81 (1981).

    Article  ADS  Google Scholar 

  28. Fitzgerald, M. & Shenk, T. Cell 24, 251–260 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. Edmonds, M., Vaughan, M. H. & Nakagato, H. Proc. natn. Acad. Sci. U.S.A. 68, 1336–1339 (1971).

    Article  ADS  CAS  Google Scholar 

  30. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  31. Purrello, M. & Balaz, I. Analyt. Biochem. 128, 393–397 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, D., Knoll, B., Riser, M. et al. A 5′-flanking sequence essential for progesterone regulation of an ovalbumin fusion gene. Nature 305, 551–554 (1983). https://doi.org/10.1038/305551a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305551a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing