Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High tyrosine kinase activity in normal nonproliferating cells

Abstract

Protein phosphorylation at serine and threonine residues has been implicated in the regulation of many cellular processes. More recently, tyrosine residue phosphorylation has been shown to be associated with stimulation of cell proliferation, including viral transformation1–7 and stimulation by epidermal growth factors (EGF)7–10, platelet-derived growth factor (PDGF)10–12 and other compounds related to cellular growth such as insulin13–15 and dimethyl sulphoxide16. To compare protein kinases and phosphoproteins of normal and leukaemic human haematopoietic cells in vivo and in vitro, we first have investigated the percentages of phosphoserine, phosphothreonine and phosphotyrosine obtained after hydrolysis of proteins from different blood cell fractions phosphorylated in vitro. We report here that phosphotyrosine formed less than 1% of the soluble fractions from polymorphonuclear cells, mononuclear cells (80% circulating lymphocytes, 20% monocytes), blood platelets and red blood cells (not shown). Surprisingly, high percentages of phosphorylated tyrosine were found only in the particulate fractions from non-proliferating anuclear cells, platelets and red blood cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hunter, T. & Sefton, B. M. Proc. natn. Acad. Sci. U.S.A. 77, 1311–1315 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Collett, M. S. & Erikson, R. L. Nature 285, 167–169 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Reynolds, F. H., Van de ven, W. J. M. & Stephenson, J. R. J. biol. Chem. 255, 11040–11047 (1980).

    CAS  PubMed  Google Scholar 

  4. Radke, K., Gilmore, Th. & Martin, G. S. Cell 21, 821–828 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Witte, O. N., Dasgupta, A. & Baltimore, D. Nature 283, 826–831 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bishop, J. M. Cell 23, 5–6 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Erikson, E., Shealy, D. J. & Erikson, R. L. J. biol. Chem. 256, 11381–11384 (1981).

    CAS  PubMed  Google Scholar 

  8. Ushiro, H. & Cohen, S. J. biol. Chem. 255, 8363–8365 (1980).

    CAS  PubMed  Google Scholar 

  9. Gill, G. N. & Lazar, Ch. S. Nature 293, 305–307 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R. & Hunter, T. Cell 31, 263–273 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Nishimura, J. & Deuel, Th. F. Biochem. biophys. Res. Commun. 103, 355–361 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Ek, B., Westermark, B., Wasteson, A. & Heldin, C. H. Nature 295, 419–420 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kasuga, M., Zick, Y., Blithe, D. L., Krettaz, M. & Kahn, C. R. Nature 298, 667–669 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Petruzzelli, L. M. et al. Proc. natn. Acad. Sci. U.S.A. 79, 6792–6796 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Avruch, J., Nemenoff, R. A., Blackshear, P. J., Pierce, M. W. & Osathanondh, R. J. biol. Chem. 25, 15162–15166 (1982).

    Google Scholar 

  16. Rubin, R. A. & Earp, H. S. Science 219, 60–63 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Weber, A. et al. Eur. J. Biochem. 130, 447–456 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Lux, S. E., John, K. M. & Ukena, T. E. J. clin. Invest. 61, 815–817 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Casnellie, J. E., Harrison, M. L., Pike, L. J., Hellstrom, K. E. & Krebs, E. G. Proc. natn. Acad. Sci. U.S.A. 79, 282–286 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Richert, N. D., Blithe, D. L. & Pastan, I. J. biol. Chem. 257, 7143–7150 (1982).

    CAS  PubMed  Google Scholar 

  21. Cheng, Y-S.E. & Chen, L. B. Proc. natn. Acad. Sci. U.S.A. 78, 2388–2392 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Plimmer, R-H. A. Biochem. J. 35, 461–469 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper, J. A. & Hunter, T. Molec. cell. Biol. 1, 165–178 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steck, T. L. J. cell Biol. 62, 1–19 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sefton, B. M., Hunter, T., Ball, E. H. & Singer, S. J. Cell 24, 165–174 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Dasgupta, J. D. & Garbers, D. L. J. biol. Chem. 258, 6174–6178 (1983).

    CAS  PubMed  Google Scholar 

  27. Jacobs, C. & Rubsamen, H. Cancer Res. 43, 1696–1702 (1983).

    CAS  PubMed  Google Scholar 

  28. Dekowski, S. A., Rybicki, A. & Drickamer, K. J. biol. Chem. 258, 2750–2753 (1983).

    CAS  PubMed  Google Scholar 

  29. Ek, B. & Heldin, C. H. J. biol. Chem. 257, 10486–10492 (1982).

    CAS  PubMed  Google Scholar 

  30. Nakamura, K. D., Martinez, R. & Weber, M. J. Molec. cell. Biol. 3, 380–390 (1983).

    Article  CAS  Google Scholar 

  31. Willingham, M. C., Pastan, I., Shih, T. Y. & Scolnick, E. M. Cell 19, 1005–1014 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Nigg, E. A., Sefton, B. M., Hunter, T., Walter, G. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 79, 5322–5326 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Smart, J. E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6013–6017 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Shealy, D. J. & Erikson, R. L. Nature 293, 666–668 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Maness, P. F. et al. Proc. natn. Acad. Sci. U.S.A. 76, 5028–5032 (1979).

    Article  ADS  CAS  Google Scholar 

  36. Waxman, L. Archs Biochem. Biophys. 195, 300–314 (1979).

    Article  CAS  Google Scholar 

  37. Kahn, A., Boivin, P., Vibert, M., Cottreau, D. & Dreyfus, J. C., Biochimie 56, 1395–1407 (1974).

    Article  CAS  PubMed  Google Scholar 

  38. Beutler, E., West, C. & Blume, K. G. J. lab. clin. Med. 88, 329–333 (1976).

    Google Scholar 

  39. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Blithe, D. L., Richert, N. D. & Pastan, I. H. J. biol. Chem. 257, 7135–7142 (1982).

    CAS  PubMed  Google Scholar 

  41. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. & Laemmli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh Tuy, F., Henry, J., Rosenfeld, C. et al. High tyrosine kinase activity in normal nonproliferating cells. Nature 305, 435–438 (1983). https://doi.org/10.1038/305435a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305435a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing