Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduction of molecular sulphur by methanogenic bacteria

Abstract

Methanogenesis is the characteristic, energy-yielding metabolic pathway in methanogenic bacteria1. Here we report that in the presence of molecular sulphur, these bacteria form large amounts of H2S by dissimilatory sulphur reduction, in addition to methane. Thus, methanogenic bacteria may be responsible for formation of much of the H2S found in their habitats (marine sediments, sewage digestors and solfataric springs—where sulphur is present), and they may also be responsible for corrosion which has previously been thought to be due exclusively to sulphate-reducing bacteria. These extremely oxygen-sensitive organisms could also create their own anaerobic environment by H2S formation. As both groups of anaerobic archaebacteria—the anaerobic thermoacidophiles2 and the methanogens—are able to reduce molecular sulphur, there may be a closer evolutionary relationship between the two groups than has been previously believed. Sulphur reduction seems to be a primitive means of energy conservation, and may have been the forerunner of energetically more efficient3 methanogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. Microbiol. Rev. 43, 260–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zillig, W., Schnabel, R., Tu, J. & Stetter, K. O. Naturwissenschaften 69, 197–204 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Thauer, R. K., Jungermann, K. & Decker, K. Bact. Rev. 41, 100–180 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfennig, N. & Biebl, H. Arch. Mikrobiol. 110, 3–12 (1976).

    Article  CAS  Google Scholar 

  5. Wolfe, R. S. & Pfennig, N. Appl. envir. Microbiol. 33, 427–433 (1977).

    CAS  Google Scholar 

  6. Laanbroek, H. J., Stal, L. J. & Veldkamp, H. Arch. Mikrobiol. 119, 95–102 (1978).

    Google Scholar 

  7. Zillig, W. et al. Zentbl. Bakt. ParasitKde C 2, 205–227 (1981).

    CAS  Google Scholar 

  8. Stetter, K. O. Nature 300, 258–260 (1982).

    Article  ADS  Google Scholar 

  9. Fischer, F., Zillig, W., Stetter, K. O. & Schreiber, G. Nature 301, 511–513 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fox, G. E. et al. Science 209, 457–463 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zeikus, J. G., Ben-Bassat, A. & Hegge, P. W. J. Bact. 143, 432–440 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stetter, K. O. et al. Zentbl. Bakt. ParasitKde C 2, 166–178 (1981).

    CAS  Google Scholar 

  13. Huber, H., Thomm, M., König, H., Thies, G. & Stetter, K. O. Arch. Mikrobiol. 132, 47–50 (1982).

    Article  Google Scholar 

  14. Wauschkuhn, A. & Gröpper, H. N. Neues Jb. Miner. Abh. 126, 87–111 (1975).

    CAS  Google Scholar 

  15. König, H. & Stetter, K. O. Zentbl. Bakt. ParasitKde C 3, 478–490 (1982).

    Google Scholar 

  16. Zeikus, J. G. & Wolfe, R. S. J. Bact. 109, 707–713 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wildgruber, G. et al. Arch. Mikrobiol. 132, 31–36 (1982).

    Article  CAS  Google Scholar 

  18. Williams, W. J. Handbook of Anion Determination, 570–572 (Butterworths, London, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stetter, K., Gaag, G. Reduction of molecular sulphur by methanogenic bacteria. Nature 305, 309–311 (1983). https://doi.org/10.1038/305309a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305309a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing