Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermally-activated creep and flexure of the oceanic lithosphere


Thermal models of the oceanic lithosphere1–4 explain ocean floor bathymetry, heat flux and gravity and geoid5 anomalies by the cooling and thickening of the lithosphere as it ages away from ocean ridges. Surface wave studies6,7 tend to confirm that thickness increases with thermal age. Thickness estimates based on the lithosphere's flexural response, parameterized in terms of an elastic model floating on a inviscid substratum, are, however, factors of two to three times less than those from the thermal and seismic models8,9. We show here that a unification of estimates can be achieved by a different, yet simple, parameterization of the bending response of the lithosphere. The lithosphere is treated as a non-convective layer that undergoes thermally-activated creep according to its temperature at the time of loading. The solutions to this problem for loads emplaced on lithosphere of increasing age are then used as a basis set to construct the solution to the problem of stress relaxation in a thermally ageing lithosphere. We show that the predicted deformation passes through a series of apparently weaker quasi-elastic states, which can be equated with those of the elastic thin-plate flexural models, but the process is controlled by the thermal lithosphere and its associated thickness. The controlling parameters are the basal viscosity of the lithosphere and the activation energy for creep in mantle rocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Oldenburg, D. W. Geophys. J. R. astr. Soc. 43, 425–451 (1975).

    Article  ADS  Google Scholar 

  2. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  3. Parsons, B. & McKenzie, D. P. J. geophys. Res. 83, 4485–4496 (1978).

    Article  ADS  Google Scholar 

  4. Sclater, J. G., Jaupart, C. & Galson, D. Rev. Geophys. Space Phys. 18, 269–311 (1980).

    Article  ADS  Google Scholar 

  5. Haxby, W. F. & Turcotte, D. L. J. geophys. Res. 83, 5473–5478 (1978).

    Article  ADS  Google Scholar 

  6. Forsyth, D. W. Tectonophysics 38, 89–118 (1977).

    Article  ADS  Google Scholar 

  7. Leeds, A. R. Phys. Earth Planet Inter. 11, 61–64 (1975).

    Article  ADS  Google Scholar 

  8. Bodine, J. H., Steckler, M. S. & Watts, A. B. J. geophys. Res. 86, 3695–3707 (1981).

    Article  ADS  Google Scholar 

  9. McNutt, M. K. & Parker, R. L. Science 199, 773–775 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Ashby, M. F. & Verrall, R. A. Phil. Trans. R. Soc. A288, 59–95 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Goetze, C. & Evans, B. Geophys. J. R. astr. Soc. 59, 463–478 (1979).

    Article  ADS  Google Scholar 

  12. Watts, A. B. & Cochran, J. R. Geophys. J.R. astr. Soc. 38, 119–141 (1974).

    Article  ADS  Google Scholar 

  13. Walcott, R. I. J. geophys. Res. 75, 3941–3954 (1970).

    Article  ADS  Google Scholar 

  14. Beaumont, C. Geophys. J.R. astr. Soc. 55, 471–497 (1978).

    Article  ADS  Google Scholar 

  15. Courtney, R. C. thesis, Dalhousie Univ. (1982).

  16. Peltier, W. R. Rev. Geophys. Space Phys. 12, 649–664 (1974).

    Article  ADS  Google Scholar 

  17. Wu, P. & Peltier, W. R. Geophys. J.R. astr. Soc. 70, 435–486 (1982).

    Article  ADS  Google Scholar 

  18. Carter, N. L. Rev. Geophys. Space Phys. 14, 301–360 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Post, R. Tectonophysics 42, 75–110 (1977).

    Article  ADS  Google Scholar 

  20. Kirby, S. H. J. geophys. Res. 85, 6353–6363 (1980).

    Article  ADS  Google Scholar 

  21. McNutt, M. K. & Menard, H. W. Geophys. J.R. astr. Soc. 71, 363–394 (1982).

    Article  ADS  Google Scholar 

  22. Watts, A. B., Bodine, J. H. & Steckler, M. S. J. geophys. Res. 85, 6369–6376 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtney, R., Beaumont, C. Thermally-activated creep and flexure of the oceanic lithosphere. Nature 305, 201–204 (1983).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing