Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional simulation of large-scale structure in the Universe

Abstract

Three-dimensional numerical simulations of the nonlinear growth of adiabatic perturbations in collisionless matter demonstrate that a cellular structure develops in the Universe. This dark matter collapses into interconnecting dense regions surrounding large voids, or low density regions. The models presented here were done with a cloud-in-cell (CIC) code using a very large number, nearly 9 × 105, of clouds. Such a large number of clouds provides adequate coverage of the voids, eliminates spurious clumping in both the high- and low-density regions, and is a significant improvement over earlier three-dimensional simulations of the cellular structure. We consider here both high (Ω0 = 1.07) and low (Ω0 = 0.1) density models. Our simulations clearly show that the interconnecting dense regions contain both filamentary and flat, pancake-shaped structures. Furthermore, the interactions among neighbouring structures are important and produce matter flows towards the dense intersections. The low-density voids which develop are approximately spherically symmetric in shape. As the voids expand, they collide and intersect. The covariance function ξ(R) has a power law form at small radii, with anticorrelation found just beyond the break and no sizeable features at larger radii.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Faber, S. M. & Gallagher, J. S. A. Rev. Astr. Astrophys. 17, 135 (1979).

    Article  ADS  Google Scholar 

  2. Rees, M. J. Proc. IAU Symp. No. 104 (in the press).

  3. Peebles, P. J. E. Astr. J. 84, 730 (1979).

    Article  ADS  Google Scholar 

  4. Davis, M. & Huchra, J. Astrophys. J. 254, 437 (1982).

    Article  ADS  Google Scholar 

  5. Ford, H. C., Harms, R. J., Ciardullo, R. & Bartko, F. Astrophys. J. Lett. 245, L53 (1981).

    Article  ADS  Google Scholar 

  6. Szalay, A. S. & Silk, J. Astrophys. J. Lett. 264, L31 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Schramm, D. N. & Steigman, G. Astrophys. J. 243, 1 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Olive, K. A., Schramm, D. N., Steigman, G., Turner, M. S. & Yang, J. Astrophys. J. 246, 557 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Zeldovich, Ya. B. Astr. Astrophys. 5, 84 (1970).

    ADS  Google Scholar 

  10. Peebles, P. J. E. The Large Scale Structure of the Universe (Princeton University Press 1980).

    Google Scholar 

  11. Bisnovaty-Kogan, G. S. & Novikov, I. D. Soviet Astr. AJ 24, 516 (1980).

    ADS  Google Scholar 

  12. Doroshkevich, A. G., Zeldovich, Ya. B., Sunyaev, R. A. & Khlopov, M. Yu. Soviet Astr. Lett. 6, 252 (1980).

    ADS  Google Scholar 

  13. Doroshkevich, A. G. et al. Mon. Not. R. astr. Soc. 192, 321 (1980).

    Article  ADS  Google Scholar 

  14. Melott, A. L. Mon. Not. R. astr. Soc. 202, 595 (1983).

    Article  ADS  Google Scholar 

  15. Melott, A. L. Astrophys. J. Lett. (in the press).

  16. Shandarin, S. F. in The Origin and Evolution of Galaxies (eds Jones B. J. T. & Jones J. E.) (Reidel Dordrecht 1983).

    Google Scholar 

  17. Klypin, A. A. & Shandarin, S. F. Mon. Not. R. astr. Soc. (in the press).

  18. Frenk, C. S., White, S. D. M. & Davis, M. Astrophys. J. 271, 417 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (McGraw-Hill San Francisco 1981).

    MATH  Google Scholar 

  20. Aarseth, S. J., Gott, J. R. & Turner, E. L. Astrophys. J. 234, 13 (1979).

    Article  ADS  Google Scholar 

  21. Efstathiou, G. & Eastwood, J. W. Mon. Not. R. astr. Soc. 194, 503 (1981).

    Article  ADS  Google Scholar 

  22. McMahon, F. Lawrence Livermore National Laboratory Rep. UCID-30083 (1983).

    Google Scholar 

  23. Hoffman, G. L., Salpeter, E. E. & Wasserman, I. Astrophys. J. 268, 527 (1983).

    Article  ADS  Google Scholar 

  24. Sato, H. Prog. theor. Phys. 68, 236 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Hoffman, Y. & Shaham, J. Astrophys. J. Lett. 262, L23 (1982).

    Article  ADS  Google Scholar 

  26. White, S. D. M. & Silk, J. Astrophys. J. 231, 1 (1979).

    Article  ADS  Google Scholar 

  27. Palmer, P. Mon. Not. R. astr. Soc. 197, 721 (1981).

    Article  ADS  Google Scholar 

  28. Dekel, A. Astrophys. J. 264, 373 (1983).

    Article  ADS  Google Scholar 

  29. Davis, M. & Peebles, P. J. E. Preprint (1982).

  30. Shanks, T. Preprint (1982).

  31. Zeldovich, Ya. B., Einasto, J. & Shandarin, S. F. Nature 300, 407 (1982).

    Article  ADS  Google Scholar 

  32. Kirshner, R. P., Oemler, A. Jr, Schecter, P. L. & Shechtman, S. A. Astrophys. J. Lett. 248, L57 (1981).

    Article  ADS  Google Scholar 

  33. DeVaucouleurs, G. Bull. astr. Soc. Ind. 9, 1 (1981).

    ADS  Google Scholar 

  34. Struble, M. F. & Rood, H. J. Astr. J. 87, 7 (1982).

    Article  ADS  Google Scholar 

  35. Davis, M., Huchra, J., Latham, D. W. & Tonry, J. Astrophys. J. 253, 423 (1982).

    Article  ADS  Google Scholar 

  36. Tully, R. B. Astrophys. J. 257, 389 (1982).

    Article  ADS  Google Scholar 

  37. Gregory, S. A., Thompson, L. A. & Tifft, W. G. Astrophys. J. 243, 411 (1981).

    Article  ADS  CAS  Google Scholar 

  38. Chincarini, G., Rood, H. J. & Thompson, L. A. Astrophys. J. Lett. 249, L47 (1981).

    Article  ADS  Google Scholar 

  39. Doroshkevich, A. G., Khlopov, M. Yu., Sunyaev, R. A., Szalay, A. S. & Zeldovich, Ya. B. Ann. N.Y. Acad. Sci. 375, 32 (1981).

    Article  ADS  CAS  Google Scholar 

  40. Bond, R. & Szalay, A. Proc. Conf. Neutrino, Maui, Hawaii (High Energy Physics Group, Honolulu, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Centrella, J., Melott, A. Three-dimensional simulation of large-scale structure in the Universe. Nature 305, 196–198 (1983). https://doi.org/10.1038/305196a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305196a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing