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mittent' behaviour, in which long periods 
of regular motion are interrupted by occa­
sional chaotic 'bursts'. This is illustrated in 
Fig. 2, which shows the voltage in Yeh and 
Kao's Josephson-junction analogue as a 
function of time. By varying the stress 
parameter, in this case the amplitude of the 
alternating current driving the circuit, the 
average interval between bursts can be set 
to any desired value. It is difficult to con­
ceive of a deterministic origin for intermit­
tency, yet Manneville and Pomeau 
discovered 12 that it is a simple property of 
the one-dimensional maps that govern 
systems such as this one. The implications 
for the analysis of experimental data are 
clear- what seems quite 'obviously' to be 

Fig. 2 Voltage as a function of time in a 
Josephson-junction analogue2. Nearly 
periodic behaviour is interrupted by occa-

sional chaotic 'bursts'. 

stochastic behaviour may arise from deter­
ministic dynamics. 

Nature contains many far-from­
equilibrium systems that are liable to ex­
hibit chaos. Some of these will be 
understood through models whose com­
plexity and universal character are com­
parable to those of one-dimensional maps. 
There are also chaotic phenomena, such as 
fully developed hydrodynamical turbu­
lence, that are not likely to be understood 
by any simple mathematical model. Yet the 
fact that one-dimensional maps may be 
adequate to describe such diverse 
phenomena as cardiac dysrhythmia 13 and 
chaos in the Mixmaster Universe 14 suggests 
that the heart of chaos is mathematically 
accessible. The intriguing question that re­
mains to be answered is, how much of our 
chaotic world is dominated by the simple 
universal varieties of chaos? D 
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Nonlinear dynamics 

Chaos in complicated systems 
from A run V. Holden 

THE current entrancement with chaos1 

began with the realization that extremely 
simple nonlinear systems could, with 
appropriate values of parameters, have ir­
regular complicated solutions. As dis­
cussed in the previous article, solutions 
often change from being periodic to being 
chaotic in a stereotyped way2. Such power­
ful results, where complicated non periodic 
behaviour is produced in a simple way, lead 
to the hope that some of the irregularities 
of nature- the babbling of a brook or the 
mindless fluttering of a butterfly - may 
also be chaotic, and explicable by simple 
nonlinear systems with few degrees of free­
dom. But relating experimental observations 
to the chaotic limit sets of mathematical 
models is speculative. A tentative step is to 
identify and characterize irregular data as if 
they formed a sample solution of a deter­
ministic system in a chaotic domain. Methods 
for doing this, and their applications, were 
considered at a recent workshop*. 

An irregular experimental time series may 
be treated as if it were chaotic if it is possible 
to reconstruct an attractor of low fractal 
dimension from the data: this may be done 
graphically by plotting the delayed time series 
against itselP. Methods exist for estimating 
the fractal dimension of the reconstructed at­
tractor4, and for estimating the rate of 
divergence of neighbouring trajectories5: it is 
not only possible to identify chaotic activity, 
but to measure how chaotic it is. 

A different approach is to construct a 
simple nonlinear map that can be used to 
simulate some aspects of the experimental 
data: an example is to plot the peak ampli­
tude of one oscillation against the peak 
amplitude of the preceding oscillation6. 
Another example is a Poincaire first return 
map, where the value a trajectory has on 
passing through a plane perpendicular to 
the trajectory is plotted against the value it 
has the next time it passes through that 
plane. These approaches are less deman­
ding on computer time, and provide a 
working model, rather than quantitative 
measures, of chaotic activity. 

Since chaotic solutions can be generated 
by simple nonlinear systems, it is natural to 
look for examples of chaotic activity in sim­
ple physical systems such as a dripping 
faucet. It is also possible to look for chaotic 
activity in complicated systems - the most 
complicated systems we know are living. 

The heart may be considered to act as a 
nonlinear oscillator, so perhaps some car­
diac dysfunctions correspond to chaotic 
behaviour 7. Glass eta/. 8 have examined the 
response of endogenously active ag­
gregates of embryonic cardiac muscle cells 
to periodic stimulation. An accurate 

*Tht· NATO Advanced Rl'St•arch Worl-.shop on 'Tt.•sting 
Nonlinear Dynamics' was hdd on 6-9 Junt• 1983. 

description of such an aggregate is compli­
cated, as not only are there many voltage­
dependent conductances in cardiac mem­
brane, but there is also the probability of 
activity-dependent changes in the ionic 
concentrations in restricted extracellular 
spaces. However, the dynamic behaviour 
during repetitive stimulation is simple- as 
the frequency is increased there is a se­
quence of period-doubling bifurcations in­
to a region of aperiodic chaotic activity. 
The experimentally determined Poincaire 
return maps may be iterated, to simulate 
the response to periodic stimulation, or 
since the bifurcation sequence for single­
peaked one-parameter maps of an interval 
into itself is largely independent of the 
detailed form of the map, a simplified cari­
cature of the map can be analysed. Thus a 
periodically driven complicated system 
that exhibits chaotic activity can be rep­
resented by a simple nonlinear mapping. 

Periodically excited nerve cells can also 
show chaotic behaviour9- what is of more 
interest is whether neurones 10 or neural 
systems can generate chaotic activity en­
dogenously. Such chaotic activity might be 
pathological, or might form part of the 
normal irregular background activity of 
the nervous system. Methods now exist for 
investigating these possibilities. 

Although no manufactured system ap­
proaches the complexity of biological 
systems, large-scale integration techniques 
have produced a generation of high-density 
complicated electronic control systems. 
Such computing devices are deterministic 
finite-state automata, and so it is natural to 
assume that their behaviour is fully predic­
table. Any irregularity in performance is 
usually ascribed to poor programming or 
to component failure. But complicated as 
well as simple nonlinear systems may ex­
hibit chaotic solutions. Chaotic activity in a 
laboratory computer system may be incon­
venient; in a locally autonomous compli­
cated military system it could be unfor­
tunate11. One can only hope that as the 
complexity of a system increases, access to 
any domains of chaotic activity becomes 
more and more unlikely. D 
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