Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sustained rise in ACh sensitivity of a sympathetic ganglion cell induced by postsynaptic electrical activities

Abstract

Long-term alteration in synaptic efficacy found in several neurones of both vertebrates and invertebrates has been suggested as an important mechanism for learning and memory1–3. In bullfrog sympathetic ganglia, acetylcholine (ACh) release from presynaptic nerve terminals is potentiated for a long time by adrenaline through a cyclic AMP system4,5. We report here a new form of mechanism for long-term synaptic potentiation in sympathetic ganglia, which occurs postsynaptically in a Ca2+-dependent manner. Our results suggest that Ca2+ entry into a ganglion cell during repeated action potentials initiates a long-lasting mechanism for the enhancement of a nicotinic ACh action on the subsynaptic membrane. This, as well as the presynaptic mechanism4–6, may contribute to neuronal plasticity in the peripheral autonomic nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. Trends Neurosci. 2, 42–45 (1979).

    Article  Google Scholar 

  2. Tsukahara, N. A. Rev. Neurosci. 4, 351–379 (1981).

    Article  CAS  Google Scholar 

  3. Kandel, E. R. & Schwartz, J. H. Science 218, 433–443 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Kuba, K., Kato, E., Kumamoto, E., Koketsu, K. & Hirai, K. Nature 291, 654–656 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Kumamoto, E. & Kuba, K. Brain Res. 265, 344–347 (1983).

    Article  CAS  Google Scholar 

  6. Koyano, K., Kuba, K., Kumamoto, E., Minota, S. & Nohmi, M. J. physiol. Soc. Jap. (in the press).

  7. Miyagawa, M., Minota, S. & Koketsu, K. Brain Res. 224, 305–313 (1981).

    Article  CAS  Google Scholar 

  8. Kobayashi, H., Hashiguchi, T. & Ushiyama, N. S. Nature 271, 268–270 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Koketsu, K. & Nishi, S. J. gen. Physiol. 53, 608–623 (1969).

    Article  CAS  Google Scholar 

  10. Adams, P. R. Adv. physiol. Sci. 4, 135–138 (1981).

    CAS  Google Scholar 

  11. Suetake, K., Kojima, H., Inanaga, K. & Koketsu, K. Brain Res. 205, 436–440 (1981).

    Article  CAS  Google Scholar 

  12. Sejnowski, T. J. Fedn Proc. 41, 2923–2928 (1982).

    CAS  Google Scholar 

  13. Akasu, T., Kojima, M. & Koketsu, K. Neurosci. Lett. Suppl. (in the press).

  14. Akasu, T., Hirai, K. & Koketsu, K. Kurume med. J. 29, 75–83 (1982).

    Article  CAS  Google Scholar 

  15. Grab, D. J., Carlin, R. K. & Siekevitz, P. J. cell. Biol. 89, 440–448 (1981).

    Article  CAS  Google Scholar 

  16. Smilowitz, H., Hadjian, R. A., Dwyer, J. & Feinstein, M. B. Proc. natn. Acad. Sci. U.S.A. 78, 4708–4712 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Fambrough, D. M. Physiol. Rev. 59, 165–227 (1979).

    Article  CAS  Google Scholar 

  18. Baudry, M., Bundman, M. C., Smith, E. K. & Lynch, G. S. Science 212, 937–938 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Brown, T. H. & McAfee, D. A. Science 215, 1411–1413 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Dolphin, A. C., Errington, M. L. & Bliss, T. V. P. Nature 297, 496–498 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Baranyi, A. & Fehér, O. Nature 290, 413–415 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  23. Nishi, S. & Koketsu, K. J. cell. comp. Physiol. 55, 15–30 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumamoto, E., Kuba, K. Sustained rise in ACh sensitivity of a sympathetic ganglion cell induced by postsynaptic electrical activities. Nature 305, 145–146 (1983). https://doi.org/10.1038/305145a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305145a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing