Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

β-Spectrin limits α-spectrin assembly on membranes following synthesis in a chicken erythroid cell lysate

Abstract

Spectrin, the major protein of the subcortical actin network in erythrocytes, contains two non-identical subunits, α and β (refs 1, 2). Spectrin is indirectly associated with the transmembrane anion transporter through the binding of β-spectrin to an extrinsic protein, ankyrin1–6. In chicken embryo erythroid cells, α-spectrin is synthesized in a threefold excess relative to β-spectrin, although the two subunits are assembled in equimolar amounts7. To investigate the regulation of assembly of equimolar amounts of spectrin, an in vitro system from chicken embryo erythroid cells has now been developed where synthesis and assembly of spectrin can be uncoupled and studied separately. Following the in vitro translation of threefold more α- than β-spectrin, 95% of the β-spectrin and equimolar amounts of α-spectrin bind post-translationally to spectrin-depleted rabbit red blood cell membranes, and the excess α-spectrin remains unbound. This α-spectrin cannot bind spectrin-depleted plasma membranes subsequently added to the lysate. The assembly of α-spectrin is, therefore, limited by the availability of β-spectrin, and both subunits assemble post-translationally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Branton, D., Cohen, C. M. & Tyler, J. Cell 24, 24–32 (1981).

    Article  CAS  Google Scholar 

  2. Marchesi, V. T. Blood 61, 1–11 (1983).

    CAS  PubMed  Google Scholar 

  3. Bennett, V. & Stenbuck, P. J. J. biol. Chem. 254, 2532–2542 (1979).

    Google Scholar 

  4. Luna, E. J., Kidd, G. H. & Branton, D. J. biol. Chem. 254, 2526–2532 (1979).

    CAS  Google Scholar 

  5. Litman, D., Hsu, C. J. & Marchesi, B. T. J. Cell Sci. 42, 1–22 (1980).

    CAS  PubMed  Google Scholar 

  6. Bennett, V. & Stenbuck, P. J. J. biol. Chem. 255, 6424–6432 (1980).

    CAS  PubMed  Google Scholar 

  7. Blikstad, I., Nelson, W. J., Moon, R. T. & Lazarides, E. Cell 32, 1081–1091 (1983).

    Article  CAS  Google Scholar 

  8. Repasky, E. A., Granger, B. L. & Lazarides, E. Cell 29, 821–833 (1982).

    Article  CAS  Google Scholar 

  9. Nelson, W. J. & Lazarides, E. Proc. natn. Acad. Sci. U.S.A. 80, 363–367 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Granger, B. L., Repasky, E. A. & Lazarides, E. J. Cell Biol. 92, 299–312 (1982).

    Article  CAS  Google Scholar 

  11. Bennett, V. & Branton, D. J. biol. Chem. 252, 2753–2763 (1977).

    CAS  PubMed  Google Scholar 

  12. Burridge, K., Kelly, T. & Mangeat, P. J. Cell Biol. 95, 478–486 (1982).

    Article  CAS  Google Scholar 

  13. Goodman, S. R., Zagon, I. S. & Kulikowski, R. R. Proc. natn. Acad. Sci. U.S.A. 78, 7570–7574 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Bennett, V., Davis, J. & Fowler, W. E. Nature 299, 126–131 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Lazarides, E. & Nelson, W. J. Cell 31, 505–508 (1982).

    Article  CAS  Google Scholar 

  16. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  17. Bradford, M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, R., Lazarides, E. β-Spectrin limits α-spectrin assembly on membranes following synthesis in a chicken erythroid cell lysate. Nature 305, 62–65 (1983). https://doi.org/10.1038/305062a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305062a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing