Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ichthyosaurian relationships illuminated by new primitive skeletons from Japan


The Ichthyosauria is a group of reptiles with fish-shaped bodies from the Mesozoic (65–250 million years ago)1,2. Their secondary adaptations to aquatic life have obscured their ancestral features3,4, and basal ichthyosaurs, which would be expected to retain these ancestral features (plesiomorphies), are poorly represented in the fossil record1. As a result, their relationships to other amniotes have been controversial for over 180 years5,6. New specimens of Utatsusaurus hataii from the Lower Triassic (240 Myr ago) of Japan are the first basal ichthyosaurs to show detailed features for almost the entire skeleton, including previously unknown parts of the skull and pelvic girdle. Computer-assisted retrodeformation of fossil images7 shows that Utatsusaurus retained features of terrestrial amniotes in both the skull and the postcranial skeleton, such as the connection between the vertebral column and the pelvic girdle. Phylogenetic analyses indicate that ichthyosaurs belong in the Diapsida, but that, unlike the sauropterygians8,9, they are not included with the Sauria (the crown group containing lizards, crocodiles, birds and Sphenodon). Recent studies have reported that the addition of ichthyosaurs to the amniote data altered the relationships among basal saurians10,11, but no major clades were affected by the inclusion of ichthyosaurs in our analyses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrodeformation of the skull of Utatsusaurus hataii (UHR 30691).
Figure 2: Reconstruction of Utatsusaurus hataii.
Figure 3: Phylogenetic position of the Ichthyosauria, according to reanalyses of two published data matrices.

Similar content being viewed by others


  1. McGowan, C. Dinosaurs, Spitfires, and Sea Dragons (Harvard Univ. Press, Cambridge and London, (1991)).

    Google Scholar 

  2. Motani, R., You, H. & McGowan, C. Eel-like swimming in the earliest ichthyosaurs. Nature 382, 347–348 (1996).

    Article  ADS  Google Scholar 

  3. Carroll, R. L. Evolutionary constraints in aquatic diapsid reptiles. Spec. Pap. Palaeontol. 33, 145–155 (1985).

    Google Scholar 

  4. Carroll, R. L. & Dong, Z. M. Hupehsuchus, an enigmatic aquatic reptile from the Triassic of China, and the problem of establishing relationships. Phil. Trans. R. Soc. Lond. B 331, 131–153 (1991).

    Article  ADS  Google Scholar 

  5. Callaway, J. M. Systematics, Phylogeny, and Ancestry of Triassic Ichthyosaurs (Reptilia, Ichthyosauria) (thesis, Univ. Rochester, (1989)).

    Google Scholar 

  6. Massare, J. A. & Callaway, J. M. The affinities and ecology of Triassic ichthyosaurs. Geol. Soc. Am. Bull. 102, 409–416 (1990).

    Article  ADS  Google Scholar 

  7. Motani, R. New technique for retrodeforming tectonically deformed fossils, with an example for ichthyosaurian specimens. Lethaia 30, 221–228 (1997).

    Article  Google Scholar 

  8. Rieppel, O. Osteology of Simosaurus gaillardoti and the relationships of stem-group Sauropterygia. Fieldiana Geol. N. 28, 1–85 (1994).

    Google Scholar 

  9. Rieppel, O. & DeBraga, M. Turtles as diapsid reptiles. Nature 384, 453–454 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Caldwell, M. W. Ichthyosauria: A preliminary phylogenetic analysis of diapsid affinities. N. Jb. Geol. Paläontol. Abh. 200, 361–386 (1996).

    Article  Google Scholar 

  11. Merck, J. W. Aphylogenetic analysis of the euryapsid reptiles. J. Vert. Paleontol. 17 (suppl.),65A (1997).

    Google Scholar 

  12. Minoura, N. et al. Excavation of Early Triassic ichthyosaurian fossils from Ogatsu, Miyagi Pref., Japan. Geol. Stud. 42, 215–232 (1993).

    Google Scholar 

  13. Minoura, N. in Paleoasian Ocean to Paleo-Pacific Ocean 64–68 (Hokkaido Univ., Sapporo, (1994).

    Google Scholar 

  14. Shikama, T., Kamei, T. & Murata, M. Early Triassic Ichthyosaurus, Utatsusaurus hataii gen. et sp. nov., from the Kitakami Massif, Northeast Japan. Sci. Rep. Tohoku Univ., Sendai, Second Ser. (Geol.) 48, 77–97 (1978).

    Google Scholar 

  15. Motani, R. Phylogeny of the Ichthyosauria (Amniota: Reptilia) with special reference to Triassic forms. J. Vert. Paleontol. 17 (suppl.),66A (1997).

    Google Scholar 

  16. Romer, A. S. Osteology of the Reptiles (Univ. Chicago Press, Chicago and London, (1956)).

    Google Scholar 

  17. Maisch, M. W. Acase against a diapsid origin of the Ichthyosauria. N. Jb. Geol. Paläontol. Abh. 205, 111–127 (1997).

    Article  Google Scholar 

  18. Williston, S. W. Osteology of the Reptiles (Harvard Univ. Press, Cambridge, MA, (1925)).

    Google Scholar 

  19. McGowan, C. The cranial morphology of the Lower Liassic latipinnate ichthyosaurs of England. Bull. Br. Mus. Nat. Hist. Geol. 24, 1–109 (1973).

    Google Scholar 

  20. Romer, A. S. An ichthyosaur skull from the Cretaceous of Wyoming. Contrib. Geol, Univ. Wyo. 7, 27–41 (1968).

    Google Scholar 

  21. Kirton, A. M. A Review of British Upper Jurassic Ichthyosaurs Thesis (Univ. Newcastle, (1983)).

    Google Scholar 

  22. Godefroit, P. The skull of Stenopterygius longifrons (Owen, 1881). Rev. Paléobiol., Genève, Vol. Spéc. 7, 67–84 (1993).

    Google Scholar 

  23. Tarsitano, S. Amodel for the origin of ichthyosaurs. N. Jb. Geol. Paläontol. Abh. 164, 143–145 (1982).

    Google Scholar 

  24. Riess, J. Fortbewegunsweise, Schwimmbiophysik, und Phylogenie der Ichthyosaurier. Palaeontogr. Abt. A 192, 93–155 (1986).

    Google Scholar 

  25. Gauthier, J., Kluge, A. G. & Rowe, T. Amniote phylogeny and the importance of fossils. Cladistics 4, 105–209 (1988).

    Article  Google Scholar 

  26. Cooper, R. A. Interpretation of tectonically deformed fossils. N. Z. J. Geol. Geophys. 33, 321–332 (1990).

    Article  Google Scholar 

  27. Hughes, N. C. & Jell, P. A. Astatistical/computer graphic technique for assessing variation in tectonically deformed fossils and its application to Cambrian trilobites from Kashmir. Lethaia 25, 317–330 (1992).

    Article  Google Scholar 

  28. Ando, T., Kawamura, M. & Minoura, N. Restoration of tectonically deformed Early Triassic ichthyosaurs. Abstr. Progr. 1997 Annu. Meet. Geol. Soc. Japan 160 (1997).

  29. Lee, M. Reptile relationships turn turtle. Nature 389, 245–246 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Swofford, D. L. PAUP 3.1.1 (Smithsonian Inst., Washington DC, (1993)).

    Google Scholar 

Download references


We thank C. McGowan for his support; K. Padian for reading the manuscript; M.Caldwall, A. Hungerbuhler, M. Kawamura, J. Merck and H.-D. Sues for discussions; Y. Tomida and M.Manabe for support at NSM; T. Kato, T. Kuwajima, G. Kawakami, H. Normura, D. Suzuki, M.Takahashi for technical support; and the Fujiwara Natural History Foundation, Tokyo, and Miller Institute for Basic Research in Science, Berkeley (R.M.) and the Fukada Geological Institue (N.M.) for financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ryosuke Motani.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motani, R., Minoura, N. & Ando, T. Ichthyosaurian relationships illuminated by new primitive skeletons from Japan. Nature 393, 255–257 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing