Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas

Abstract

Recent geochemical studies on ferromanganese deep-sea nodules have shown that the relationship between Mn and Fe allows us to differentiate between a diagenetic type (Mn/Fe ≥ 2.5) and a hydrogenetic type (Mn/Fe ≤ 2.5)1–7. Diagenetic and the lower parts of mixed type nodules are mainly supplied by an early diagenetic pore water source; hydrogenetic type nodules grow by very slow accumulation of inorganic colloidal particles of hydrated metal oxides from near-bottom seawater. Growth rates of hydrogenetic nodules generally do not exceed 5 mm Myr−1 (refs 8–11), whereas diagenetic nodules were found to grow much faster: an extreme example is the rate of 168 mm M yr−1 that was recently reported for a Mn-rich diagenetic type of nodule from the Peru Basin6. A different inter-element relationship of Co to the main metals Mn and Fe in different type of nodules has also been observed. We show here that the flux of Co into ferromanganese seamount crusts from the central Pacific is similar to the flux into pelagic nodules: the amount of Co supplied per unit of time and area is nearly constant in the oceanic water column. The most important factor governing the Co-enrichment is the growth rate; no local source is needed to explain the observed Co concentrations up to 2% in ore samples from summit areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Price, N. B. & Calvert, S. E. Mar. Geol. 9, 145–171 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Lyle, M., Dymond, J. & Heath, G. R. Earth planet. Sci. Lett. 35, 55–64 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Calvert, S. E. & Price, N. B. Mar. Chem. 5, 43–74 (1977).

    Article  CAS  Google Scholar 

  4. Halbach, P. & Özkara, M. Colloques int. Cent. natn. Rech. scient. 289, 77–88 (1979).

    CAS  Google Scholar 

  5. Halbach, P., Hebisch, U. & Scherhag, C. Chem. Geol. 34, 3–17 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Reyss, J. L., Marchig, V. & Ku, T. L. Nature 295, 401–403 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Halbach, P., Scherhag, C., Hebisch, U. & Marchig, V. Miner. Dep. 16, 59–84 (1981).

    Article  CAS  Google Scholar 

  8. Goldberg, E. D. in Oceanography, 583–597 (AAAS, Washington DC, 1961).

    Google Scholar 

  9. Ku, T. C. & Broecker, W. S. Deep-Sea Res. 16, 625–637 (1969).

    CAS  Google Scholar 

  10. Krishnaswami, S. et al. Earth planet. Sci. Lett. 59, 217–234 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Heye, D. & Marchig, V. Mar. Geol. 23, M19–M25 (1977).

    Article  CAS  Google Scholar 

  12. Arrhenius, G. et al. Colloques. int. Cent. natn. Rech. scient. 289, 333–356 (1979).

    CAS  Google Scholar 

  13. Menard, H. W. Marine Geology of the Pacific (McGraw-Hill, New York, 1964).

    Google Scholar 

  14. Halbach, P. in Marine Mineral Deposits, New Research Results and Economic Prospects, 60–85 (Glückauf, Essen, 1982).

    Google Scholar 

  15. Burns, R. G. & Burns, V. M. Nature 255, 130–131 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Krishnaswami, S. & Cochran, J. K. Earth planet. Sci. Lett. 40, 45–62 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Mangini, A. & Sonntag, C. Earth planet. Sci. Lett. 37, 251–256 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Peterson, M. N. A. Science 154, 1542–1544 (1966).

    Article  ADS  CAS  Google Scholar 

  19. Halbach, P. & Puteanus, D. DFG-Zwischenbericht zum Forschungsvorhaben Ha 563/21-1 (Clausthal-Zellerfeld, 1983).

  20. Murray, J. W. Geochim. cosmochim. Acta 39, 635–647 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Burns, R. G. Geochim. cosmochim. Acta 40, 95–102 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Knauer, G. A., Martin, J. H. & Gordon, R. M. Nature 297, 49–51 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Halbach, P., Özkara, M. & Hense, J. Miner. Dep. 10, 397–411 (1975).

    Article  CAS  Google Scholar 

  24. Somayajulu, B. L. K., Heath, G. R., Moore, T. C. & Cronan, D. S. Geochim. cosmochim. Acta 35, 621–624 (1971).

    Article  ADS  CAS  Google Scholar 

  25. Moore, W. S. et al. Earth planet. Sci. Lett. 52, 151–171 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halbach, P., Segl, M., Puteanus, D. et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature 304, 716–719 (1983). https://doi.org/10.1038/304716a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304716a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing