Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mineralogy and dynamics of a pyrolite lower mantle

Abstract

There is a growing consensus that the Earth's lower mantle possesses a bulk composition broadly similar to that of the upper mantle (known as pyrolite)1,2,3. But little is known about lower-mantle mineralogy and phase chemistry4,5, especially at depth. Here we report diamond-anvil cell experiments at pressures of 70 and 135 GPa (equivalent to depths within the Earth of about 1,500 and 2,900 km, respectively) which show that pyrolite would consist solely of magnesian-silicate perovskite (MgPv), calcium-silicate perovskite (CaPv) and magnesiowüstite (Mw). Contrary to recent speculation6,7, no additional phases or disproportionations were encountered and MgPv was found to be present at both pressures. Moreover, we estimate that, at ultra-high pressures where thermal expansivities are low, buoyancy forces inherent in subducted slabs because of their lithology will be of similar magnitude to those required for thermally driven upwelling. So slabs would need to be about 850 °C cooler than their surroundings if they are to sink to the base of the mantle. Furthermore, initiation of plume-like upwellings from the core–mantle boundary, long attributed to superheating, may be triggered by lithologically induced buoyancy well before thermal equilibration is attained. We estimate that ascent would commence within 0.5 Gyr of the slab reaching the core–mantle boundary, in which case the lowermost mantle should not be interpreted as a long-term repository for ancient slabs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polished cross-section of a DAC charge recovered from a pressure of 70 GPa.
Figure 2: Partitioning of iron between pyrolite MgPv and Mw pairs in contact (KD).

Similar content being viewed by others

References

  1. Anderson, O. L. Finding the isentropic density of perovskite: implications for iron concentration in the lower mantle. Geophys. Res. Lett. 24, 213–216 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Jackson, I. & Rigden, S. M. in The Earth's Mantle: Composition, Structure and Evolution (ed. Jackson, I.) 405–460 (Cambridge Univ. Press, (1998)).

    Google Scholar 

  3. Stacey, F. D. Thermoelasticity of (Mg,Fe)SiO3perovskite and a comparison with the lower mantle. Phys. Earth Planet. Inter. 98, 65–77 (1996).

    Article  ADS  CAS  Google Scholar 

  4. O'Neill, B. & Jeanloz, R. Experimental petrology of the lower mantle: A natural peridotite taken to 54 GPa. Geophys. Res. Lett. 77, 1477–1480 (1990).

    Article  ADS  Google Scholar 

  5. Irifune, T. Absence of an aluminous phase in the upper part of the Earth's lower mantle. Nature 370, 131–133 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Ahmed-Zaı¨d, I. & Madon, M. Electron microscopy of high-pressure phases synthesized from natural garnets, kyanite and anorthite in a diamond anvil cell. Earth Planet. Sci. Lett. 129, 233–247 (1995).

    Article  ADS  Google Scholar 

  7. Saxena, S. K. et al. Stability of perovskite (MgSiO3) in the Earth's mantle. Science 274, 1357–1359 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Kesson, S. E. & Fitz Gerald, J. D. Partitioning of MgO, FeO, NiO, MnO and Cr2O3between magnesian silicate perovskite and magnesiowüstite: implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth Planet. Sci. Lett. 111, 229–240 (1991).

    Article  ADS  Google Scholar 

  9. Mao, H. K., Shen, G. & Hemley, R. J. Multivariable dependence of Fe–Mg partitioning in the lower mantle. Science 278, 2098–2100 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Wood, B. J. & Rubie, D. C. The effect of alumina on phase transformations at the 660 km discontinuity from Fe–Mg partitioning experiments. Science 273, 1522–1524 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  12. Chopelas, A. & Boehler, R. Thermal expansivity in the lower mantle. Geophys. Res. Lett. 19, 1983–1986 (1992).

    Article  ADS  Google Scholar 

  13. van der Hilst, R., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Grand, S. & Helmberger, D. V. Upper mantle shear structure of North America. Geophys. J. R. Astron. Soc. 76, 399–438 (1984).

    Article  ADS  Google Scholar 

  15. Faust, J. & Knittle, E. The stability and equation of state of majoritic garnet synthesised from natural basalt at mantle conditions. Geophys. Res. Lett. 23, 3377–3380 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. Mineral chemistry and density of subducted basaltic crust at lower mantle pressures. Nature 372, 767–769 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Irifune, T. & Ringwood, A. E. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett. 117, 101–110 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 89, 4389–4402 (1994).

    Article  ADS  Google Scholar 

  19. Griffiths, R. & Campbell, I. Stirring and structure in mantle plumes. Earth Planet. Sci. Lett. 99, 66–78 (1990).

    Article  ADS  Google Scholar 

  20. Wang, Y., Weidner, D. J., Liebermann, R. C. & Zhao, Y. P-V-T equation of state of (Mg,Fe)SiO3perovskite: constraints on composition of the lower mantle. Phys. Earth Planet. Inter. 83, 13–40 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Wang, Y., Weidner, D. J. & Guyot, F. Thermal equation of state of CaSiO3perovskite. J. Geophys. Res. 101, 661–672 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Yutani, M., Yagi, T., Yusa, H. & Irifune, T. Compressibility of calcium ferrite-type MgAl2O4. Phys. Chem. Minerals 24, 340–344 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Anderson, O. L., Masuda, K. & Isaak, D. G. Limits on the value of δTand γ for MgSiO3perovskite. Phys. Earth Planet. Inter. 98, 31–46 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Li, B., Rigden, S. M. & Liebermann, R. C. Elasticity of stishovite at high pressure. Phys. Earth Planet. Inter. 96, 113–128 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Ita, J. & Stixrude, L. Petrology, elasticity and composition of the mantle transition zone. J. Geophys. Res. 97, 6849–6866 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Niu, Y. & Batiza, R. An empirical method for calculating melt compositions produced below mid-ocean ridges; application for axis and off-axis (seamounts) melting. J. Geophys. Res. 96, 21753–21777 (1991).

    Article  ADS  CAS  Google Scholar 

  27. O'Neill, H. S. C. & Palme, H. in The Earth's Mantle: Composition, Structure and Evolution (ed. Jackson, I.) 3–128 (Cambridge Univ. Press, (1998)).

    Google Scholar 

  28. Ringwood, A. E. Origin of the Earth and Moon (Springer, New York, (1979)).

    Book  Google Scholar 

  29. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. G. Phase relations, structure and crystal chemistry of some aluminous silicate perovskites. Earth Planet. Sci. Lett. 134, 187–201 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Jackson, H. St C. O'Neill, G. F. Davies and A. Leitch for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesson, S., Fitz Gerald, J. & Shelley, J. Mineralogy and dynamics of a pyrolite lower mantle. Nature 393, 252–255 (1998). https://doi.org/10.1038/30466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30466

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing