Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interior turns in globular proteins

Abstract

Reverse turns are specific sites in proteins at which the polypeptide chain changes its overall direction1–6. This category of secondary structure enables the chain to turn a corner, and its frequent occurrence7,8 is the geometric basis for the ultimate globular shape of the protein. β-Turns in particular are comprised of four consecutive residues with a stereochemistry9 that constrains the turn to be polar. In consequence, turns are almost always situated at the surface of the protein, in contact with solvent water. We have searched proteins of known structure and find that, on occasion, a turn may be buried within the hydrophobic interior of the molecule. In every instance of a buried turn, one or more solvent molecules were also found in a hydrogen-bonded complex with main-chain atoms of the turn residues. These bound water molecules appear to function as an integral part of the protein structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuntz, I. D. J. Am. chem. Soc. 94, 8568–8572 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, P. N., Momany, F. A. & Scheraga, H. A. Proc. natn. Acad. Sci. U.S.A. 68, 2293–2297 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Crawford, J. L., Lipscomb, W. N. & Schellman, C. G. Proc. natn. Acad. Sci. U.S.A. 70, 538–542 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Levitt, M. & Chothia, C. Nature 261, 552–558 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Richardson, J. S. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Rose, G. D. & Seltzer, J. P. J. molec. Biol. 113, 153–164 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Rose, G. D. & Wetlaufer, D. B. Nature 268, 769–770 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Chou, P. Y. & Fasman, G. D. J. molec. Biol. 115, 135–175 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Venkatachalam, C. M. Biopolymers 6, 1425–1436 (1968).

    Article  CAS  PubMed  Google Scholar 

  10. Rose, G. D. Nature 272, 586–590 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Rose, G. D. & Roy, S. Proc. natn. Acad. Sci. U.S.A. 77, 4643–4647 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Smith, J. A. & Pease, L. G. CRC crit. Rev. Biochem. 8, 315–399 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. Connolly, M. Quantum Chemistry Program Exchange Bull., Program 429, 75 (Indiana University Chemistry Department, Bloomington, 1981).

  16. Dijkstra, B. W., Kalk, K. H., Hol, W. G. J. & Drenth, J. J. molec. Biol. 147, 97–123 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Cohen, G. H., Silverton, E. W. & Davies, D. R. J. molec. Biol. 148, 449–479 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Diamond, R. J. molec. Biol 82, 371–391 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Chambers, J. L. & Stroud, R. M. Acta crystallogr. B35, 1861–1874 (1979).

    Article  Google Scholar 

  20. Cotton, F. A., Hazen, E. E. Jr & Legg, M. J. Proc. natn. Acad. Sci. U.S.A. 76, 2551–2555 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Fehlhammer, H., Bode, W. & Huber, R. J. molec. Biol. 111, 415–438 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Edsall, J. T. Am. chem. Soc. Symp. Ser. 127 (1980).

  23. Edsall, J. T. & McKenzie, H. A. Adv. Biophys. 16, 53–183 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Greer, J. J. molec. Biol. 153, 1027–1042 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Stroud, R. M., Kossiakoff, A. A. & Chambers, J. L. A. Rev. Biophys. Bioengng 6, 177–193 (1977).

    Article  CAS  Google Scholar 

  26. Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C. & Rupley, J. A. The Enzymes 7, 665 (1972).

    Article  CAS  Google Scholar 

  27. Kuntz, I. D. & Kauzmann, W. Adv. Protein Chem. 28, 239–345 (1974).

    Article  CAS  PubMed  Google Scholar 

  28. Dailey, H. A. & Strittmatter, P. J. biol. Chem. 256, 3951–3955 (1981).

    CAS  PubMed  Google Scholar 

  29. Brunner, J. et al. J. biol. Chem. 254, 1821–1828 (1979).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, G., Young, W. & Gierasch, L. Interior turns in globular proteins. Nature 304, 654–657 (1983). https://doi.org/10.1038/304654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304654a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing