Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell cycle control by timer and sizer in Chlamydomonas

Abstract

Conservation of cell cycle control mechanisms is indicated by the presence of functionally homologous division control genes in unrelated yeasts1 and by the nonspecific action of oncogenes2,3, but it remains uncertain what property of a growing cell results in the initiation of events leading to division. Response to a critical size is indicated by the longer growth period of smaller cells prior to division4–6, which is consistent with deferment of division events until a minimum size is attained; however, in the same cell types faster growing cells are larger7–9 and this is more easily explained if division follows a timed period during which faster growing cells grow more, as is postulated for mammalian cells10–11. Therefore, either time-or size-dependent controls might be the sole significant mechanism12,13; we report here, however, that both controls do function in Chlamydomonas since cycle duration is under timer control and cell size determines the number of division rounds committed at the end of each cycle, and hence whether 2, 4, 8 or 16 daughter cells are formed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beach, D., Durkacz, B. & Nurse, P. Nature 300, 706–709 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Logan, J. & Cairns, J. Nature 300, 104–105 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Colby, W. W., Chen, E. Y., Smith, D. H. & Levinson, A. D. Nature 301, 722–725 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Fantes, P. A. J. Cell Sci. 24, 51–67 (1977).

    CAS  PubMed  Google Scholar 

  5. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Expl Cell Res. 105, 79–98 (1977).

    Article  CAS  Google Scholar 

  6. Shields, R., Brooks, R. F., Riddle, P. N., Capallero, D. F. & Delia, D. Cell 15, 469–474 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Fantes, P. A. & Nurse, P. Expl Cell Res. 107, 377–386 (1977).

    Article  CAS  Google Scholar 

  8. Jagadish, M. N., Lorincz, A. & Carter, B. L. A. FEMS microbiol. Lett. 2, 235–237 (1977).

    Article  Google Scholar 

  9. Tovey, M. & Brouty-Boye, D. Expl Cell Res. 101, 346–354 (1976).

    Article  CAS  Google Scholar 

  10. Smith, J. A. & Martin, L. in Cell Cycle Controls (eds Padilla, G. M., Cameron, I. L. & Zimmerman, A.) 43–60 (Academic, New York, 1974).

    Google Scholar 

  11. Brooks, R. F., Bennett, D. C. & Smith, J. A. Cell 19, 493–504 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Brooks, R. F. Soc. exp. Biol. Semin. Ser. 10, 35–61 (1981).

    Google Scholar 

  13. Pardee, A. B., Shilo, B. Z. & Koch, A. L. in Hormones and Cell Culture (eds Sato, G. & Ross, R.) 373–392 (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

  14. Tamiya, H., Iwamura, T., Shibata, K., Hase, E. & Nihei, T. Biochim. biophys. Acta 12, 23–40 (1953).

    Article  CAS  PubMed  Google Scholar 

  15. Wanka, F. Arch. Mikrobiol. 34, 161–188 (1959).

    Article  CAS  PubMed  Google Scholar 

  16. Howell, S. H., Blaschko, W. J. & Drew, C. M. J. Cell Biol. 67, 126–135 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Spudich, J. L. & Sager, R. J. Cell Biol. 85, 136–145 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Daan, S. in Biological Timekeeping, Soc. exp. Biol. Semin. Ser. (ed. Brady, J.) 11–32 (Cambridge University Press, London, 1982).

    Google Scholar 

  19. Molloy, G. R. & Schmidt, R. R. Biochem. biophys. Res. Commun. 40, 1125–1133 (1968).

    Article  Google Scholar 

  20. Kates, J. R., Chiang, K. S. & Jones, R. F. Expl Cell Res. 49, 121–135 (1968).

    Article  CAS  Google Scholar 

  21. Mihara, S. & Hase, E. Pl. Cell Physiol., Tokyo 12, 225–236 (1971).

    Google Scholar 

  22. Poyton, R. O. J. Bact. 113, 203–211 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. John, P. C. L., Lambe, C. A., McGookin, R., Orr, B. & Rollins, M. J. J. Cell Sci. 55, 51–67 (1982).

    CAS  PubMed  Google Scholar 

  24. Edmunds, L. N. & Adams, K. J. Science 211, 1002–1013 (1981).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  25. Lees, A. D. J. Insect Physiol. 19, 2279–2316 (1973).

    Article  Google Scholar 

  26. Nurse, P. Nature 286, 9–10 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Rollins, M. J., Harper, J. D. I. & John, P. C. L. J. gen. Microbiol. 129, 1899–1919 (1983).

    CAS  Google Scholar 

  28. Coleman, A. W. J. Phycol. 18, 192–195 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnan, L., John, P. Cell cycle control by timer and sizer in Chlamydomonas. Nature 304, 630–633 (1983). https://doi.org/10.1038/304630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing