Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simulated response of the ocean carbon cycle to anthropogenic climate warming


A 1995 report1 of the Intergovernmental Panel on Climate Change provides a set of illustrative anthropogenic CO2 emission models leading to stabilization of atmospheric CO2 concentrations ranging from 350 to 1,000 p.p.m. (14). Ocean carbon-cycle models used in calculating these scenarios assume that oceanic circulation and biology remain unchanged through time. Here we examine the importance of this assumption by using a coupled atmosphere–ocean model of global warming5 for the period 1765 to 2065. We find a large potential modification to the ocean carbon sink in a vast region of the Southern Ocean where increased rainfall leads to surface freshening and increased stratification6. The increased stratification reduces the downward flux of carbon and the loss of heat to the atmosphere, both of which decrease the oceanic uptake of anthropogenic CO2 relative to a constant-climate control scenario. Changes in the formation, transport and cycling of biological material may counteract the reduced uptake, but the response of the biological community to the climate change is difficult to predict on present understanding. Our simulation suggests that such physical and biological changes might already be occurring, and that they could substantially affect the ocean carbon sink over the next few decades.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time series of model boundary conditions and predictions.
Figure 2: Zonal integrals for the decade 2056–65 of: a, the change in air–sea CO2 fluxes (positive for ocean uptake) d.


  1. Schimel, D. et al. in Climate Change 1995 (ed. Houghton, J. T.) 76–86 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  2. Schimel, D. et al. in Climate Change 1994 (ed. Houghton, J. T.) 35–71 (Cambridge Univ. Press, (1995)).

    Google Scholar 

  3. Enting, I. G., Wigley, T. M. L. & Heimann, M. Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/atmosphere/land Analyses (CSIRO Division of Atmospheric Research, 31, (1994)).

    Google Scholar 

  4. Sarmiento, J. L., Le Quéré, C. & Pacala, S. W. Limiting future atmospheric carbon dioxide. Glob. Biogeochem. Cycles 9, 121–138 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Haywood, J. M., Stouffer, R. J., Wetherald, R. T., Manabe, S. & Ramaswamy, V. Transient response of a coupled model to estimate changes in greenhouse gas and sulfate concentrations. Geophys. Res. Lett. 24, 1335–1338 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Manabe, S. & Stouffer, R. J. Century-scale effects of increased atmospheric CO2on the ocean–atmosphere system. Nature 364, 215–218 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part 1: annual mean response. J. Clim. 785–818 (1991).

  8. Sarmiento, J. L. & Le Quéré, C. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Coale, K. H. et al. Amassive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 57, 137–161 (1997).

    Article  CAS  Google Scholar 

  11. Sarmiento, J. L. & Orr, J. C. Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2and ocean chemistry. Limnol. Oceanogr. 36, 1928–1950 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Siegenthaler, U. & Wenk, T. Rapid atmospheric CO2variations and ocean circulation. Nature 308, 624–626 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Sarmiento, J. L. & Toggweiler, J. R. Anew model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Knox, F. & McElroy, M. Changes in atmospheric CO2, influence of marine biota at high latitudes. J. Geophys. Res. 89, 4629–4637 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Sarmiento, J. L., Orr, J. C. & Siegenthaler, U. Aperturbation simulation of CO2uptake in an ocean general circulation model. J. Geophys. Res. 97, 3621–3646 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Manabe, S. & Stouffer, R. J. Multiple century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Clim. 7, 5–23 (1994).

    Article  ADS  Google Scholar 

  17. Maier-Reimer, E., Mikolajewicz, U. & Winguth, A. Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim. Dyn. 12, 711–721 (1996).

    Article  Google Scholar 

  18. Gent, P. R., Willebrand, J., McDougall, T. J. & McWilliams, J. C. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25, 463–474 (1995).

    Article  ADS  Google Scholar 

  19. Denman, K., Hofmann, E. & Marchant, H. in Climate Change 1995 (ed. Houghton, J. T.) 483–516 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  20. Keeling, R. F., Najjar, R. P., Bender, M. L. & Tans, P. P. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob. Biogeochem. Cycles 7, 37–68 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Bender, M., Ellis, T., Tans, P., Francey, R. & Lowe, D. Variability in the O2/N2ratio of southern hemisphere air, 1991–1994: implications for the carbon cycle. Glob. Biogeochem. Cycles 10, 9–22 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–504 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) Climate Change 1992 (Cambridge Univ. Press, (1992)).

    Google Scholar 

  24. Sarmiento, J. L., Murnane, R. & Quéré, C. L. Air–sea CO2transfer and the carbon budget budget of the North Atlantic. Phil. Trans. R. Soc. Lond. B 348, 211–218 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7383 (1992).

    Article  ADS  Google Scholar 

  27. Archer, D., Kheshgi, H. & Maier-Reimer, E. Multiple timescales for the neutralization of fossil fuel CO2. Geophys. Res. Lett. 24, 405–408 (1997).

    Article  ADS  CAS  Google Scholar 

Download references


We thank Corinne Le Quéré for adding the carbon component ot the coupled model, Fortunat Joos for providing the atmospheric CO2 figures, and Jerry Mahlman and Yasuhiro Yamanaka, as well as Klaus Keller, Francois Morel, Phillippe Tortell and Ernst Maier-Reimer, for comments. The contributions of J.L.S. and T.M.C.H. were supported by the Office of Global Programs of the National Oceanic and Atmospheric Administration, and by the National Science Foundation. The paper was written in part while J.L.S. was visiting the Bermuda Biological Station for Research with support from EXXON Corporation; J.L.S. thanks Tony Knap for making the arrangements.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jorge L. Sarmiento.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarmiento, J., Hughes, T., Stouffer, R. et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing